Introduction to Algorithms: 6.006 Problem Set 3
Massachusetts Institute of Technology March 22, 2012

Problem Set 4

This problem set is due Wednesday, April 4 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. An assortment of sorts (10 points)

(a) Merge sort on n integers in the range {1,...,n?} requires time ©(n®logn).
What is ¢?

(b) Counting sort on n integers in the range {1,...,n3} requires time O(n°).

What is ¢?

(c) Radix sort on n integers in the range {1,...,n*} (with optimal choice of param-
eters) requires time O(n°).
What is ¢?

2. Median of two arrays (20 points)

Let X and Y be two arrays, each containing n ordered values already in sorted order.
Give the most efficient algorithm you can to find the median of all 2n elements in
arrays X and Y. Prove correctness of your algorithm and analyze its running time.

Problem Set 4

3. Cycle testing (20 points)

Design and analyze an algorithm for detecting if an undirected graph has an odd cycle.
(A cycle of length k is a sequence of k distinct vertices vy, ..., v, such that there are
edges between v; and vy, between vy and w3, etc, and also an edge between vy, and v;.)

4. BFS or DFS? (10 points)

For each of the following problems, answer ’B’ if the most appropriate search algorithm
is BF'S, or ’D’ if the most appropriate search algorithm is DF'S

(a)

(b)

You are a mouse who is trapped in a maze with no cycles. You have no memory,
but you know left from right. Your escape strategy is closest to which search
algorithm?

You are a pirate looking for hidden treasure on an island. You are at the location
marked X on the map, but the maps is slightly inaccurate, so you believe the
treasure to be at a nearby location. How do you determine the order in which to
search the locations on the island?

You are Google Maps. Which search algorithm do you use to get driving direc-
tions?

Which search algorithm explores a graph in a manner reminiscent to a BST in-
order traversal?

Which search algorithm is good at keeping track of shortest distances from the
start node?

Problem Set 4 3

5. True/False (30 points)

(a)

Let G be an undirected graph. If we have a back edge when we run DFS on G,
then the graph has a cycle.

Let G be a directed graph. If we have a cross edge when we run DFS on G, then
the graph has a directed cycle.

The running time of insertion sort can be reduced to O(n - log(n)) if we use
binary search when inserting each element into its appropriate position of the
array instead of traversing the array backwards.

The running time of BFS is O(V + E) irrespective of the graph representation.

Let G be a connected undirected graph, let v be a vertex in GG, and let D be a
directed graph obtained by orienting the edges of GG arbitrarily. Then it is always
the case that a DFS in D starting from v will explore the entire graph.t

If an undirected graph has vertices vy, v9, and v3 in a triangle, then when per-
forming BFS, AT LEAST two of vy, vs, and v3 must be at the same level.

If an undirected graph has vertices vy, v9, and v3 in a triangle, then when per-
forming BFS, EXACTLY two of vy, vy, and v3 must be at the same level.

If an undirected graph has vertices vy, v9, and v3 in a triangle, then when per-
forming DF'S, no two of them can be on the same level. (We define “level” as the
length of the path taken from the source in the DFS tree.)

Suppose that in the “Awkward Sort of Party” problem from Problem Set 2, each
of the n people are assigned a vertex in a directed graph G. DFS is run on the
graph, and a person arrives at the party when his vertex is first explored by the
search, and leaves the party when his vertex is finished processing (“colored black”
in the terminology of CLRS). True or False: At the conclusion of the party, no
one will become a Twitter follower of anyone else.

A strongly connected component in a directed graph G is a maximal subset of
vertices such that there is a directed path from any vertex in the set to any
other vertex. True or False: Let C' and D be two (distinct) strongly connected
components of a directed graph GG, and suppose that there is a directed edge from
some vertex in C' to some vertex in). Then any depth-first search will either
explore no vertices in D or will finish processing all vertices in D before it finishes
processing all vertices in C. (By “finish processing,” we mean, in the notation of
CLRS, that the node has been “colored black.”)

IThe DFS does not restart from other vertices when the first search finishes

Problem Set 4

6. Breadth-First Search (30 points)

One way of representing a graph in Python is as a dictionary edges mapping node
numbers to lists of adjacent node numbers. The vertex set of the graph is the set of
keys of the dictionary, that is, edges.keys(). A key k has a directed edge outwards
to each key in the list edges[k]. This representation is basically an implemention of
the adjacency lists discussed in class.

Write a function find distances that takes two arguments: an dictionary, edges,
and a list of vertices, sources. It should return a dictionary dist which records
the minimum distance from ANY source to each vertex of the graph, or None if it is
unreachable.

Your function should pass the following test cases:

graph = {0: [1,3], 1: [2], 2 : [0, 3], 3: [1]}
sources = [0]
dist = find_distances(graph, sources)

dist[0] == 0
dist[1] == 1
dist[2] == 2
dist[3] == 1

graph = {1: [2],
2: [’skip a few’],
'skip a few’ : [99, 199],

98: [99]

99: [100],

100: [’skip a few’]
198: [199]

199: [200]

200: []1 %

sources = [1, 100]
dist = find_distances(graph, sources)
dist[1] == 0

dist[2] == 1
dist[’skip a few’] ==
dist[98] == None
dist[99] ==

dist[100] == 0
dist[198] == None
dist[199] == 2
dist[200] == 3

