

Introduction to Algorithms: 6.006 Problem Set 3
Massachusetts Institute of Technology March 8, 2012


Problem Set 3


This problem set is due Wednesday, March 21 at 11:59PM.


Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.


For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.


Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.


1. Hash Collisions (20 points)


Consider hashing integers which are selected independently at random from the uni-
verse U = [1, 2, . . . , 84].1 Recall that a hash family hi from U to {0, 1, . . . ,m − 1} is
universal if, for any distinct x and y:


Pri
[
hi(x) = hi(y)


]
≤ 1


m
.


a. Suppose we would like m = 4. Consider the hash family hi(x) = x2 +x+ i (mod 4),
for i ∈ {0, 1, 2, 3}.
1. What is the probability of having NO collisions when TWO random elements


are hashed using the function h2(x) = x2 + x + 2 (mod 4)?


2. The family hi(x) a universal hash family. True or False?


b. Suppose we would like m = 3. Consider the hash family hi(x) = x2 + i (mod 3),
for i ∈ {0, 1, 2}.
1. What is the probability of having NO collisions when TWO random elements


are hashed using the function h1(x) = x2 + 1 (mod 3)?


2. The family hi(x) a universal hash family. True or False?


1The integer keys are chosen independently. It is possible that we attempt to hash two things with the
same key, in which case we will consider this a hash collision.







2 Problem Set 3


c. Suppose we would like m = 12. Consider the hash family hi(x) = ix + 2 (mod 12),
for i ∈ {0, . . . , 11}.
1. What is the probability of having NO collisions when TWO random elements


are hashed using the function h7(x) = 7x + 2 (mod 12)?


2. The family hi(x) a universal hash family. True or False?


d. Suppose we would like m = 7. Consider the hash family hi(x) = ix + 2 (mod 7),
for i ∈ {0, . . . , 6}.
1. What is the probability of having NO collisions when TWO random elements


are hashed using the function h5(x) = 5x + 2 (mod 7)?


2. The family hi(x) a universal hash family. True or False?


Solution Format:


Your answer for the first part of each question should consist of a float probability
in the range [0, 1], accurate to within 0.001 of the correct answer. Your answer to the
second part of each question should be a boolean.







Problem Set 3 3


2. Open Addressing (30 points)


Suppose you are hashing integers into the hash table of size 10 below, using the hash
function h(k) = k mod 10 to find the location of key k and using linear probing to
resolve collisions.


After inserting 6 values into the empty hash table, the table is in the state below:


0
1
2 22
3 13
4 54
5 32
6 46
7 43
8
9


(a) Which one of the following insertion orders would result in this state?


1) 46, 22, 54, 32, 13, 43


2) 54, 22, 13, 32, 43, 46


3) 46, 54, 22, 13, 32, 43


4) 22, 46, 43, 13, 54, 32


(b) Suppose that 46 was deleted from the table. How many cells would be inspected
if you then searched the table for 65?


(c) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell i contains the value i+1? Give an example of such a sequence,
or prove that no such sequence exists.


(d) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell i contains the value 9 − i? Give an example of such a
sequence, or prove that no such sequence exists.


Solution Format:


For part a), your answer should be an integer choice, and for part b) it should be
a integer answer. For parts c) and d), if you believe that no such sequence exists, your
answer should be a string containing a proof of this fact. If you have a counterexample,
you should enter it as a list of tuples; the first element of each tuples should either be
an ’i’ for insertion or a ’d’ for deletion, and the second should be the key being inserted
or deleted.







4 Problem Set 3


3. Price changes (20 points)


The local supermarket sells n products whose prices are stored in a sorted array
[p1, p2, . . . pn], where pi ≤ pi+1 for all i ≤ n− 1.


After some seasonal price cuts, k of these prices are updated. You are informed of
an array of price changes [(i1, d1), . . . , (ik, dk)]. Here, a tuple (i, d) means that the ith
price should be changed by d (which may be negative), so pi is changed to pi + d.


Give a fast algorithm which takes the original price array and the array of price changes,
and computes the resorted array of new prices after the changes. Analyze its running
time in terms of n and k.


You can assume that comparison of prices can be done in constant time (and you may
not assume anything else about the prices).


Solution Format:


You answer to this problem should be a string containing a concise description of
your algorithm and a brief analysis of its runtime.







Problem Set 3 5


4. One-Bit Error Correction (60 points)


Suppose that you want to recover messages sent over a noisy channel. You are given
a list of k valid messages m1, m2, ... mk, each of which is an n-bit binary string. The
messages r received from the channel are all corruptions of one of these k strings - each
one differs from exactly one of the mi in exactly one position. Your goal is to find the
index i of the valid message that r is derived from.


Write a function recover original messages that takes two parameters, the lists
valid messages and corrupted messages, and returns a list containing the indices
of the valid messages corresponding to each corrupted message. Each of the valid and
corrupted messages will be a string containing only the characters ’0’ and ’1’. All of
these strings will be the same length.


Note that the number of valid messages, the number of corrupted messages, and the
length of each message will be quite large. Your algorithm should scale well with all
of these parameters.


Here are some tests which your function should pass:


recover_original_messages([’000’, ’111’], [’110’, ’010’]) == [1, 0]


recover_original_messages([’000000’, ’110001’, ’001110’, ’111111’],


[’001010’, ’110000’, ’110111’]) == [2, 1, 3]


Solution Format:


You should answer this problem by filling in the body of the recover original messages


function in the solution template.






