

Introduction to Algorithms: 6.006 Problem Set 2
Massachusetts Institute of Technology Feb 23, 2012


Problem Set 2


This problem set is due Wednesday, March 7 at 11:59PM.


Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.


For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.


Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.


1. Del or no del? (35 points, 5 points per part)


Consider the following correct Python implementation for deleting a node from a binary
search tree. This function is analogous to the delete method of the BSTNode class
found on the website, except that it assumes that all BSTNode instances have a parent
pointer. (Since the implementation on the website does not include parent pointers,
you will not be able to test this code by replacing the delete method in that class.)


This delete function takes a node, self, and a value, val. It deletes the node with
that value from the subtree rooted at self, if it exists and if the tree has at least one
other node. The function returns True if some node was deleted.


Assume each node has five properties: its val, count, left, right, and parent. The
left, right, and parent pointers are either other instances of this class or None. Also,
assume that the search method is implemented exactly as in the BSTNode class.







2 Problem Set 2


1 def delete(self, val):


2 # Find the node to delete.


3 node = self.search(val)


4 if node.val != val:


5 return False


6


7 # If there were multiple occurrences of this value, we’re done.


8 node.count -= 1


9 if node.count > 0:


10 return True


11


12 if node.right is None:


13 if node.left is None:


14 # This node is a leaf. Delete its reference from its parent.


15 if node.parent is not None:


16 if node.parent.left == node:


17 node.parent.left = None


18 else:


19 node.parent.right = None


20 return True


21 else:


22 # We are the only node. Deletion is not allowed.


23 return False


24 else:


25 # Move the old left child to our place.


26 node.val = node.left.val


27 node.count = node.left.count


28 node.right = node.left.right


29 node.right.parent = node


30 node.left = node.left.left


31 node.left.parent = node


32 return True


33 else:


34 # We have a right child. Replace this node with its successor


35 # in the right subtree.


36 next = node.right.search(val)


37 if next is not None:


38 node.val = next.val


39 node.count = next.count


40 next.count = 1


41 node.right.delete(next.val)


42 return True







Problem Set 2 3


Answer the following questions with True or False.


a. The code is correct if lines 25 – 32 are replaced with the lines


25 # Move the old left child to our place.


26 node.left.parent = node.parent


27 if node.parent is not None:


28 if node.parent.left == node:


29 node.parent.left = node.left


30 else:


31 node.parent.right = node.left


32 return True


b. The code is correct if line 36 is replaced with


36 next = node.right


c. The code is correct if line 37 is removed (and lines 38 – 40 are unindented).


d. The code is correct if all instances of left and right are interchanged.


e. Lines 34 – 42 can be replaced with the lines


34 # We have a right child. Replace this node with its successor


35 # in the right subtree.


36 next = node.right.search(val)


37 if next.right is not None:


38 next.right.parent = next.parent


39 if next.parent.left == next:


40 next.parent.left = next.right


41 else:


42 next.parent.right = next.right


43 return True


f. The code is correct if line 41 is moved to just before line 37.


g. The code is correct if lines 41 and 42 are combined into


40 return node.right.delete(next.val)


Solution Format:


You should answer this problem with a boolean value for each part. For example,
if you thought the answer to part y) was True and the answer to part z) was False,
then your answer should be:


answer_for_problem_1_part_y = True


answer_for_problem_1_part_z = False







4 Problem Set 2


2. Binary search tree, of sorts (20 points)


Consider the following code for a sorting algorithm. Here, the BST class is an im-
plementation of a self-balancing binary search tree. This class supports the insert,
get min, and delete operations in O(log n) time, where n is the number of elements
in the tree.


def bst_sort(list):


bst = BST()


for val in list:


bst.insert(val)


ans = []


for i in range(len(list)):


min = bst.get_min()


ans.append(min)


bst.delete(min)


return ans


a. (5 points) This function sorts the list: True or False?


b. (5 points) On a list of n elements, the runtime of this algorithm is:


1. O(n)


2. O(n log n)


3. O(n log2 n)


4. O(n2)


5. O(n2 log n)


6. O(n2 log2 n)


c. (10 points) Assuming that (comparison) sort is impossible in better than Θ(n log n),
give a short argument that it is impossible to construct a data structure which stores
arbitrary ordered values and supports insert, get min and delete, each in o(log n).


Solution Format:


Your answer for part a) should be a boolean. Your answer for part b) should be
an integer between 1 and 6, and your answer for part c) should be a (short) string.







Problem Set 2 5


3. An awkward sort of party (20 points)


There are n people who attend a party, labeled 1 through n. Person i arrives at time
ai and departs at time di. The 2n arrival / departure times are all distinct.


None of the partygoers knew each other before the event. Afterwards, each person
goes on Twitter and follows the people who were there when they arrived at the party,
but who left before they did.


Find an efficient algorithm to determine the total number of new Twitter followings
formed, given the the n pairs of the arrival and departure times of each person. Prove
that your algorithm is correct and find its running time. For full credit, your algorithm
should run in O(n log n) time.


Solution Format:


Your answer for this problem should be a string, such as:


answer_to_problem_3 = """


I have a beautiful algorithm for this problem, but this tweet is not


long enough to contain it.


"""







6 Problem Set 2


4. Polyomino time algorithms (50 points)


Two biologists have independently documented the proteins found in two strains of
bacteria, E. foo and E. bar. Each protein is a polyomino: a two-dimensional shape
formed by attaching a number of unit squares along their edges. Two proteins are the
same if one polyomino can be transformed into the other by a rotation and translation.


Each scientist represents a protein as a list of ordered pairs of integers, one pair for
each unit square in the protein. Each pair represents the coordinates of the center
of its unit square. For example, the T-protein (which looks much like the T piece in
Tetris) might be represented by the list [(0,0),(1,0),(-1,0),(0,-1)] or by the list
[(2,3),(2,4),(2,2),(1,3)]:


Two representations of the T-protein.


As a computer scientist working with the biology department, your job is to determine
the number of proteins in common between the two strains of bacteria. Write a function
num proteins in common that efficiently computes the number of proteins in common,
given two lists of proteins. You may assume that the proteins in each list are distinct.
However, you may not assume a bound on the number of proteins or on the number
of squares in a protein.


We have attached some code to help you get started with this problem. Specifically,
we have provided three functions for your use:


• a translate function that translates a polyomino by a fixed offset


• a rotate function that rotates a polyomino by a quarter-turn counterclockwise


• and a compare function that determines if two polyominoes are equivalent after
rotations and translations


(To see more examples of polyominoes, you may want to visit ntris.mit.edu. How-
ever, a high score will not get you any credit for this class.)






