
Introduction to Algorithms: 6.006 Problem Set 2
Massachusetts Institute of Technology Feb 9, 2012

Problem Set 1 Solutions

1. (15 points) Order of Growth

For each group of functions, sort the functions in increasing order of asymptotic (big-
O) complexity. Partition each group into equivalence classes such that fi(n) and fj(n)
are in the same class if and only if fi(n) = Θ(fj(n)). (You do not need to show your
work for this problem.)

(a) (5 points) Group A:

f1(n) = n log n

f2(n) = n+ 100

f3(n) = 10n

f4(n) = 1.01n

f5(n) =
√
n · (log n)3

Solution:

[[5],[2,3],[1],[4]]

We observe that f5 has the smallest order of growth, since it grows sublinearly.
(Recall that log n = o(nε) for any ε > 0.) Next, f2 = Θ(f3), since additive
and multiplicative constants do not affect asymptotic growth. We know that
n log n = ω(n), and finally the largest growth is 1.01n, which grows exponentially.

(b) (5 points) Group B:

f1(n) = 2n

f2(n) = 22n

f3(n) = 2n+1

f4(n) = 10n

Solution:

[[1,3],[2],[4]]

We observe that 2n and 2n+1 are in the same equivalence class, since they differ
only by a factor of two (and constant multiples do not matter.) Next, we observe
that f2 = ω(f1), since

lim
n→∞

22n

2n
= lim

n→∞
2n =∞.

2 Problem Set 1 Solutions

Finally, 10n = ω(22n), since

lim
n→∞

10n

22n
= lim

n→∞

2n · 5n

2n · 2n
= lim

n→∞

(
5

2

)n

=∞.

(c) (5 points) Group C:

f1(n) = nn

f2(n) = n!

f3(n) = 2n

f4(n) = 1010100

Solution:

[[4],[3],[2],[1]]

The smallest order of growth is clearly f4, since constant functions are Θ(1). Next,
we observe that 2n = o(n!), since

lim
n→∞

n!

2n
= lim

n→∞

1

2
· 2

2
· 3

2
· · · n

2
≥ lim

n→∞

1

2
·
(

3

2

)n−2

=∞.

Finally, the fact that n! = o(nn) follows from Stirling’s approximation that n! ≈√
2πn

(
n
e

)n
, and noting that

nn√
2πn

(
n
e

)n =
1√

2πne−n
=

en√
2πn

which goes to ∞ as n → ∞. We can also prove that n! = o(nn) directly by
expanding n! and nn to notice that nn/n! ≥ n

2
, which goes to ∞ as n→∞.

2. (10 points) Recurrence Relations

(a) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T (n) = 4T (n/2) + log n.

1. Θ(n)

2. Θ(n log n)

3. Θ(n2)

4. Θ(n2 log n)

Solution:

3

Problem Set 1 Solutions 3

The easiest way to see this is by the master theorem, since nlog2 4 = n2, and
log n = o(n2−ε). We can also solve this problem by expanding the recurrence to
obtain a sum, and noting that the largest term in the sum dictates the asymptotic
behavior. (Each subsequent term is less than half of the previous term, and
therefore the entire sum is bounded by a constant multiple of the first term.)

(b) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T (n) = 9T (n/3) + n2.

1. Θ(n log n)

2. Θ(n2)

3. Θ(n2 log n)

4. Θ(n3)

Solution:

3

This follows by the master theorem, since nlog3 9 = n2. Since the additive term has the
same asymptotic growth as nlog3 9, we gain an extra log factor.

3. (20 points) 2D Peak Finding

Consider the following approach for finding a peak in an (n× n) matrix:

1. Find a maximum element m in the middle column of the matrix.

• If the the left neighbor of m is greater than it, discard the center column and
the right half of the matrix.

• Else, if the right neighbor of m is greater than it, discard the center column
and the left half of the matrix.

• Otherwise, stop and return m.

2. Find a maximum element m′ in the middle row of the remaining matrix.

• If the the upper neighbor of m′ is greater than it, discard the center row and
the bottom half of the matrix.

• Else, if the lower neighbor of m′ is greater than it, discard the center row and
the top half of the matrix.

• Otherwise, stop and return m′.

3. Go back to step 1.

(a) (5 points) Let the worst-case running time of this algorithm on an (n×n) matrix
be T (n). State a recurrence for T (n). (You may assume that it takes constant
time to discard parts of the matrix.)

Solution:

4 Problem Set 1 Solutions

T(n) = T(n/2) + \Theta(n)

In each iteration, we reduce an n × n matrix to a n/2 × n/2 submatrix. Do-
ing so requires Θ(n) work, since we must check all elements in the appropriate
row/column.

(b) (5 points) Solve this recurrence to find the asymptotic behavior of T (n).

T(n) = \Theta(n)

This follows by expanding the recurrence. We can bound the Θ(n) terms above
or below by cn, and then bound T (n) by

cn+
cn

4
+
cn

8
+
cn

16
+ · · · ≤ 2cn.

(c) (10 points) Prove that this algorithm always finds a peak, or give a small (n ≤ 7)
counterexample on which it does not.

Solution: This algorithm does not always find a peak. One possible counterexample
matrix is given below.

[[0,0,0,3,2,1,0],

[0,0,0,0,0,0,0],

[0,0,0,0,7,0,0],

[0,0,0,4,6,0,0],

[0,0,0,0,0,0,0],

[0,0,0,0,0,0,0],

[0,0,0,0,0,0,0]]

When we run the algorithm, it will return 2 in location (0, 4), which is not a peak.
The algorithm will first find that 4 is the maximum element in the middle column, and
therefore recurse on the right half of the matrix (since 4 is adjacent to 6). It will then
find that 6 is the maximum element in right half of the middle row, and will therefore
recurse on the upper right quadrant (since 7 is adjacent to 6). It will then find that
1 is the maximum element in the middle column of the 3 × 3 upper-right submatrix,
and will therefore discard all but the top three elements in the column beginning with
“2.” Finally, it will return 2 in location (0, 4) as the answer, since 2 is above the 0 in
location (1, 4) and is greater than it.

4. (30 points) Programming Exercise: Peak In Circle

Write a function find peak in circle that efficiently finds a peak value in a circle of
integers. This function should take a list of integers as an input. Two elements in this
list are adjacent if they are consecutive elements of the list or if they are the first and

Problem Set 1 Solutions 5

last element. A peak is an element of the list which is greater than both of its adjacent
elements - your goal is to find the value of any peak.

You may assume that the input list is non-empty. However, you may not change the
entries of the list, and your function should also accept (immutable) tuples. Here are
some example test cases that your function should agree with:

Both 4 and 5 are peaks in the array [1, 2, 5, 3, 4]

find_peak_in_circle([1, 2, 5, 3, 4]) in (4, 5)

The element 3 is not a peak in [3, 2, 1, 4] because it is adjacent to 4

find_peak_in_circle([3, 2, 1, 4]) == 4

Solution: An example algorithm is below. Notice that in this algorithm we keep track
of the bounds into the array (instead of copying the array with each recursion) and
we recurse on the side containing the maximum element we have seen thus far. This
algorithm has worst-case running time Θ(log n).

def find_peak_in_circle(input):

max_location = 0

if input[-1] > input[0]:

max_location = len(input) - 1

min_bound = 0

max_bound = len(input)

while min_bound < max_bound - 1:

mid = (min_bound + max_bound) / 2

if input[mid] < input[max_location]:

if mid < max_location:

min_bound = mid + 1

else:

max_bound = mid

elif mid + 1 < max_bound and input[mid + 1] > input[mid]:

max_location = mid + 1

min_bound = mid + 1

elif input[mid - 1] > input[mid]:

max_location = mid - 1

max_bound = mid

else:

return input[mid]

return input[max_location]

