

Introduction to Algorithms: 6.006 Problem Set 1
Massachusetts Institute of Technology Feb 9, 2012

Problem Set 1

This problem set is due Wednesday, February 22 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solu-
tions by modifying the solution template (in Python) which is also available on
the course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice questions, your grade will be based only on the correctness of your an-
swer. For all other non-programming questions, full credit will be given only to the correct
solution which is described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. (15 points) Order of Growth

For each group of functions, sort the functions in increasing order of asymptotic (big-
O) complexity. Partition each group into equivalence classes such that fi(n) and fj(n)
are in the same class if and only if fi(n) = Θ(fj(n)). (You do not need to show your
work for this problem.)

(a) (5 points) Group A:

f1(n) = n log n

f2(n) = n + 100

f3(n) = 10n

f4(n) = 1.01n

f5(n) =
√

n · (log n)3

(b) (5 points) Group B:

f1(n) = 2n

f2(n) = 22n

f3(n) = 2n+1

f4(n) = 10n

2 Problem Set 1

(c) (5 points) Group C:

f1(n) = nn

f2(n) = n!

f3(n) = 2n

f4(n) = 1010100

Solution Format:

Your answer to this problem should be a list of lists of integers. Each sublist should
contain the indices of a set of functions which all have the same rate of growth. The
order of the indices within the sublist does not matter. The sublists should be ordered
from the slowest-growing functions to the fastest.

Example Question:

f1(n) = n

f2(n) = 2n3

f3(n) = n + 5

f4(n) = n2

f5(n) = n3

Example Answer:

Note that 4 is in a list by itself

Note that the order of 1 and 3 (and 5 and 2) does not matter

answer_for_example_for_problem_1 = [[1, 3], [4], [5, 2]]

Problem Set 1 3

2. (10 points) Recurrence Relations

(a) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T (n) = 4T (n/2) + log n.

1. Θ(n)

2. Θ(n log n)

3. Θ(n2)

4. Θ(n2 log n)

(b) (5 points) What is the asymptotic complexity of an algorithm with runtime given
by the recurrence:

T (n) = 9T (n/3) + n2.

1. Θ(n log n)

2. Θ(n2)

3. Θ(n2 log n)

4. Θ(n3)

Solution Format:

Your answer to this problem should be a single integer for each part. For example, if
you thought the answer to part (a) was 5 and the answer to part (b) was 6, then your
answer should look like:

answer_for_problem_2_part_a = 5

answer_for_problem_2_part_b = 6

4 Problem Set 1

3. (20 points) 2D Peak Finding

Consider the following approach for finding a peak in an (n× n) matrix:

1. Find a maximum element m in the middle column of the matrix.

• If the the left neighbor of m is greater than it, discard the center column and
the right half of the matrix.

• Else, if the right neighbor of m is greater than it, discard the center column
and the left half of the matrix.

• Otherwise, stop and return m.

2. Find a maximum element m′ in the middle row of the remaining matrix.

• If the the upper neighbor of m′ is greater than it, discard the center row and
the bottom half of the matrix.

• Else, if the lower neighbor of m′ is greater than it, discard the center row and
the top half of the matrix.

• Otherwise, stop and return m′.

3. Go back to step 1.

(a) (5 points) Let the worst-case running time of this algorithm on an (n×n) matrix
be T (n). State a recurrence for T (n). (You may assume that it takes constant
time to discard parts of the matrix.)

(b) (5 points) Solve this recurrence to find the asymptotic behavior of T (n).

(c) (10 points) Prove that this algorithm always finds a peak, or give a small (n ≤ 7)
square counterexample on which it does not.

Solution Format:

Your answers to parts (a) and (b) should be Python strings. For example, you may
write:

answer_for_problem_3_part_a = ’This is a Python string.’

answer_for_problem_3_part_b = ’’’

Here is a Python multiline string.

It starts and ends with three quotation marks.

’’’

If your answer to part (c) is a proof of correctness, then return a string as above. If it
is a counterexample matrix, then write the matrix as a list of lists of integers, not as
a string.

Problem Set 1 5

4. (30 points) Programming Exercise: Peak In Circle

Write a function find peak in circle that efficiently finds a peak value in a circle of
integers. This function should take a list of integers as an input. Two elements in this
list are adjacent if they are consecutive elements of the list or if they are the first and
last element. A peak is an element of the list which is greater than or equal to both of
its adjacent elements - your goal is to find the value of any peak.

You may assume that the input list is non-empty. However, you may not change the
entries of the list, and your function should also accept (immutable) tuples. Here are
some example test cases that your function should agree with:

Both 4 and 5 are peaks in the array [1, 2, 5, 3, 4]

find_peak_in_circle([1, 2, 5, 3, 4]) in (4, 5)

The element 3 is not a peak in [3, 2, 1, 4] because it is adjacent to 4

find_peak_in_circle([3, 2, 1, 4]) == 4

Solution Format:

You should answer this problem by filling in the body of the function find peak in circle

in the solution template.

