[ot ——

6.006 - Introduction to Algorithms ||
|

Lecture 17:
Heuristics for Faster Graph Search

Linear time Is too slow...

Google Maps: ~10™ locations, 10" edges
- Dijkstra's would take ©(1 minute)

Trafﬁn::].w Mare... I'.lﬁp Satelhte Earth _L
AN % Rockvile o H|II
€T » wAshbum oA
Potomac ".. o Silver
b StEﬂrng i e Spnng 'I::-ulleg
Middienurg 2 EESII.H‘I \ { F'EII'I'I;
B - = v Elethesda |IIur11 i
I:_:l | =T .'-:-\L - ." "‘:r ?fr:f"
=5 : il I'I-
= Chantilly Oakton R
he Flains B 7
[I% Fairfax '“gtﬂ” Fureslt-.
% ' Nemndna ==
Warr =~ Newmgmn}l e
e - Lﬂhe_.g.ﬂf'i!ﬂ?_ fa;"' “Washingtan
sffersanton Dale ‘;:-It.}f) L] Waldor
o T _.___..j-:
Z .
dlle Dumfries ﬁ |
Remington TF'EII'IQ'E'EI , { La Flata

'ILH Aquia /. ; n
20 8010 Googl= - Map data @zmu&uﬂm;@ e of Use | Report 3 urublemi%;

e ——— I ——

Today's goals

- Develop heuristics for shortest path searches
- Preserve correctness

- Improve runtime in practice, not in theory

- Consider special classes of graphs:

- Random graphs
- Planar-weighted graphs

Part 1: “random” graphs
- Every vertex has d random neighbors
- Consider the neighborhood of a vertex s

- Number of vertices at distance 1: d
- Number at distance 2: ~d?
~ ...number at distance k: ~d*

1

141516 1718192021 222324252627 2829 3031 323334 353637

____ — e S e e

BFS in random graphs

- G is a random graph (n vertices, degree d)

- Suppose we search for a path from stotin G
- Almost all vertices are at levels ~log n

- Almost all time spent at the last levels
- How can we improve our runtime?

Bidirectional BFS

- |dea: instead of running a BFS from s to ¢, run

BFS from s to t and from f to s simultaneously

- For each level r:

- Compute vertices at distance j from s
- Compute vertices at distance i from ¢

- Stop when a vertex v has been found from
both sand ¢

- Shortest path from s to t runs through v

Example of bidirectional BFS

Shortest path from R1 - R2
Subgraph 1 9 Subgraph 2
e (3) (8)
u 1
© & il RG

~\Z O R PP
9 FInntE , 2) +'5;;nm2 ee
S & @ O g v e
& ® Rogo >
Intersection point
Search 1 started from Root 1 Search 2 started from Root 2

Order of visitation: 1, 2, 3, ...

Proof of correctness

- If shortest path from s to t is of length 2k, then
middle vertex v, appears in both level ks

- |f shortest path is of length 2k+1, then vertex
v.., appears in s-level k+1 and t-level k

- |s this too easy?

“Analysis” on random graphs

- Bidirectional BFS expands (log_ n)/ 2 levels,
instead of log_n

- Explores about +/n vertices
- Graph search in sublinear time!

- Performs well on many non-random graphs

Bidirectional Dijkstra

- Run Dijkstra simultaneously forwards from s
and backwards to ¢

- Keep vertices in two min-heaps:

- First sorted by distance from s
- Second sorted by distance to ¢

- Pop the smaller of the two minimums

- From s heap: add itto a set S
- From theap:additto T

- Repeat till we add a vertex v to both sets

— e -

———

Subtleties in bidirectional Dijkstra

- The shortest path from s to f does not
necessarily run through the vertex v...

- It goes from something in S to somethingin T

- Loop over every edge from a vertex xin Sto a
vertex yin T

- Find paths with lengths d(s, x) + I(x, y) + d(y, {)

- If any of these paths is shorter than the path
through v (d(s, v) + d(v, t)), return it instead

Part 2: planar-weighted graphs

- In a planar-weighted graph, vertices are points

- Edge length /(u, v) is the distance from u to v

- We've seen this before:

Location:”
291 BroadwayMew York Wy 100071814 | Go |

1 el o =
el v DRy L Mg ot

The map is limited to 100 locations for perfomance reasons.

o I e — S—

Dijkstra on planar-weighted graphs |
|

- In reality: - In an ideal world:
“goal gosl

Goal-directed search: A*

- |ldea: use extra information to guide search
fromstot

- Assign each vertex v a potential A(v)

- t should have potential A(t) =0

- Vertices close to t should have low potential

- Try to search toward low potential

- Modify edge costs: I'(u, v) = I(u, v) - A(u) + A(v)
- Run Dijkstra?

(

Edge modification preserves paths

- New edge costs: [(u, v) = l(u, v) - A(u) + A(v)
- Claim: the shortest path from u to vis
preserved by edge modification

~ Let (u, V, V, oon V, v) be a path from u to v

- New path length:

| Mu,v)+1(v,v,)+. .. +I(v,V)
=Ilu, v.)-Au) + A(v,)) + (v, v,)-A(v,) + A(v,) + ... + (v, v) - A(v,) + A(V)
=Wu, v)+ (v, v)+..+Iv, v)]-Au)+Av)

- New path length = old path length — A(u) + A(V)
__ — e — e e e

Consistent heuristics

- Edge modification preserves paths

- We can use Dijkstra if I'(u, v) 2 0 for all u, v
- Aslong as /(u, v) - A(u) + A(v) 20

- How to choose A(u)?

- Suppose graph is planar-weighted

- Use distance to t as potential: A(u) = d(u, t)
- Triangle inequality: /(u, v) + d(v, t) = d(u, 1)
- Other graphs — other potentials

—

iy

A* has been called one of the top ten
algorithms of the last century!

L m—

(

Other ideas to speed up search...

- Precompute shortest paths for some pairs...
- “Incremental”. use data from prior searches...
- Only return approximate shortest paths...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

