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6.006 - Introduction to Algorithms ||
|

Lecture 17:
Heuristics for Faster Graph Search




Linear time Is too slow...

Google Maps: ~10™ locations, 10" edges
- Dijkstra's would take ©(1 minute)
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Today's goals

- Develop heuristics for shortest path searches
- Preserve correctness

- Improve runtime in practice, not in theory

- Consider special classes of graphs:

- Random graphs
- Planar-weighted graphs




Part 1: “random” graphs
- Every vertex has d random neighbors
- Consider the neighborhood of a vertex s

- Number of vertices at distance 1: d
- Number at distance 2: ~d?
~ ...number at distance k: ~d*
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BFS in random graphs

- G is a random graph (n vertices, degree d)

- Suppose we search for a path from stotin G
- Almost all vertices are at levels ~log n

- Almost all time spent at the last levels
- How can we improve our runtime?




Bidirectional BFS

- |dea: instead of running a BFS from s to ¢, run

BFS from s to t and from f to s simultaneously

- For each level r:

- Compute vertices at distance j from s
- Compute vertices at distance i from ¢

- Stop when a vertex v has been found from
both sand ¢

- Shortest path from s to t runs through v




Example of bidirectional BFS

Shortest path from R1 - R2
Subgraph 1 9 Subgraph 2
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Intersection point
Search 1 started from Root 1 Search 2 started from Root 2

Order of visitation: 1, 2, 3, ...




Proof of correctness

- If shortest path from s to t is of length 2k, then
middle vertex v, appears in both level ks

- |f shortest path is of length 2k+1, then vertex
v.., appears in s-level k+1 and t-level k

- |s this too easy?




“Analysis” on random graphs

- Bidirectional BFS expands (log_ n)/ 2 levels,
instead of log_n

- Explores about +/n vertices
- Graph search in sublinear time!

- Performs well on many non-random graphs




Bidirectional Dijkstra

- Run Dijkstra simultaneously forwards from s
and backwards to ¢

- Keep vertices in two min-heaps:

- First sorted by distance from s
- Second sorted by distance to ¢

- Pop the smaller of the two minimums

- From s heap: add itto a set S
- From theap:additto T

- Repeat till we add a vertex v to both sets
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Subtleties in bidirectional Dijkstra

- The shortest path from s to f does not
necessarily run through the vertex v...

- It goes from something in S to somethingin T

- Loop over every edge from a vertex xin Sto a
vertex yin T

- Find paths with lengths d(s, x) + I(x, y) + d(y, {)

- If any of these paths is shorter than the path
through v (d(s, v) + d(v, t)), return it instead




Part 2: planar-weighted graphs

- In a planar-weighted graph, vertices are points

- Edge length /(u, v) is the distance from u to v

- We've seen this before:

Location:”
291 BroadwayMew York Wy 100071814 | Go |
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The map is limited to 100 locations for perfomance reasons.
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Dijkstra on planar-weighted graphs |
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- In reality: - In an ideal world:
“goal gosl




Goal-directed search: A*

- |ldea: use extra information to guide search
fromstot

- Assign each vertex v a potential A(v)

- t should have potential A(t) =0

- Vertices close to t should have low potential

- Try to search toward low potential

- Modify edge costs: I'(u, v) = I(u, v) - A(u) + A(v)
- Run Dijkstra?
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Edge modification preserves paths

- New edge costs: [(u, v) = l(u, v) - A(u) + A(v)
- Claim: the shortest path from u to vis
preserved by edge modification

~ Let (u, V, V, oon V, v) be a path from u to v

- New path length:

| Mu,v)+1(v,v,)+. .. +I(v,V)
=Ilu, v.)-Au) + A(v,)) + (v, v,)-A(v,) + A(v,) + ... + (v, v) - A(v,) + A(V)
=Wu, v)+ (v, v)+..+Iv, v)]-Au)+Av)

- New path length = old path length — A(u) + A(V)
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Consistent heuristics

- Edge modification preserves paths

- We can use Dijkstra if I'(u, v) 2 0 for all u, v
- Aslong as /(u, v) - A(u) + A(v) 20

- How to choose A(u)?

- Suppose graph is planar-weighted

- Use distance to t as potential: A(u) = d(u, t)
- Triangle inequality: /(u, v) + d(v, t) = d(u, 1)
- Other graphs — other potentials
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A* has been called one of the top ten
algorithms of the last century!
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Other ideas to speed up search...

- Precompute shortest paths for some pairs...
- “Incremental”. use data from prior searches...
- Only return approximate shortest paths...
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