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Coin Flips in Algorithms 
•  Last time we gave an algorithm SILVIO for primality testing 
•  Input: Number n (represented by O(log n) bits) 
•  Desired Behavior: “PRIME” if n is prime, “COMPOSITE” o.w. 
•  SILVIO run in time poly(log n), i.e. polynomial in the representation of n.  
•  SILVIO flipped coins (namely somewhere in its execution it chose a random 

element in Zn
*) 

•  SILVIO’S Behavior:  
–  Pr[A(n)=“PRIME”]=1, if n is prime  
–  Pr[A(n)=“PRIME”]≤1/2, if n is composite 

•  By repetition can boost the probability of outputting a correct answer as 
much as we want. 

•  Can SILVIO be derandomized? 
•  There is a primality testing algorithm that is deterministic.  
•  It was discovered many years later and is more complicated. 
•  Moral: Flipping coins enables simpler, and (potentially) faster computation. 

Unknown as of yet 
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MIN-CUT 
•  Input: Undirected connected graph G=(V,E). 
•  Output: Partition V into L and R minimizing the edges between L and R. 
•  i.e. find the bottleneck of a graph. 
•  E.g. 

•  Best deterministic algorithm: O( |V| |E| log |V|2/|E|). 
•  Fastest and simplest known algorithm: randomized; time O(|V|2 log|V|) 
•  Obtained by David Karger in 1993. 
•  Intuition: Minimum cut is (hopefully) a small set of edges. 
•  SO if I pick a random edge, chances are that it’s not part of the minimum 

cut. 

Any edge is a min-cut 



Karger’s Algorithm 
•  Example execution: 

•  Pseudocode: 

While more than two nodes remain: 
- pick random edge e = (u, v); 
-  merge u and v. 
 (called a contraction) 

Output surviving edges. 



Karger’s Algorithm 
•  Good execution: 

•  Bad execution: 
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A,B	  

E A,B	  
C,D	  

oops! 

Claim: Pr[good execution] ≥ 2/n2 

not a min-cut 

è ~ n2 repetitions suffice! 



Karger’s Algorithm 
•  Lower-bounding the probability of good execution. 
•  Graph may have many min-cuts (remember tree example). 
•  Let’s fix one of them C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[none of chosen edges belongs to C] 

  = Pr[e0∉ C] ⋅ Pr[e1∉ C | e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 

G0 G1 G2 G3 

e0 

e1 
e2 



Karger’s Algorithm 
•  Let’s fix a min-cut C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[none of chosen edges belongs to C] 

  = Pr[e0∉ C] ⋅ Pr[e1∉ C | e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 
•  Warm-up: Pr[e0∉ C]? 

G0 G1 G2 G3 

e0 

e1 
e2 

Pr[e0 /∈ C] =
|E|− |C|

|E| = 1− |C|
|E|≥ 1− |C|

|V ||C|/2
= 1− 2

|V |

if the min-cut of a graph 
has size |C| then every 
vertex has degree ≥|C| 



Karger’s Algorithm 
•  Let’s fix a min-cut C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 
•  Warm-up:  Pr[e0∉ C] ≥ 1-2/|V| 
•  Pr[ei∉ C | e0,…,ei-1∉ C] ? 
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|. 
•  Proof: All edges in C have survived. So min-cut at most size |C|. 
•  If there is a smaller cut in Gi, then that cut exists also in G0. 
•  QED 

G0 G1 G2 G3 

e0 

e1 
e2 



Karger’s Algorithm 
•  Let’s fix a min-cut C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 
•  Warm-up:  Pr[e0∉ C] ≥ 1-2/|V| 
•  Pr[ei∉ C | e0,…,ei-1∉ C] ? 
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|. 
•  So: 

G0 G1 G2 G3 

e0 

e1 
e2 

Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

??



Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

|V |− i

Karger’s Algorithm 
•  Let’s fix a min-cut C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 
•  Warm-up:  Pr[e0∉ C] ≥ 1-2/|V| 
•  Pr[ei∉ C | e0,…,ei-1∉ C] ? 
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|. 
•  So: 

G0 G1 G2 G3 

e0 

e1 
e2 



Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

|V |− i

Karger’s Algorithm 
•  Let’s fix a min-cut C. 
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm. 

•  Want to find probability that Gn-2 only contains edges of C. 
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C] 
•  So: 

•  Hence: 

G0 G1 G2 G3 

e0 

e1 
e2 

=
|V |− i− 2

|V |− i

= 2
|V ||V |−1

Pr[success] ≥ |V |−2
|V | · |V |−3

|V |−1 · |V |−4
|V |−2 · |V |−5

|V |−3 · . . . · 4
6 · 3

5 · 2
4 · 1

3

≥ 2/n2 è repeat algorithm ~n2 times and 
choose best cut 
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Random Walks 
•  Given undirected graph G = (V, E) 
•  A squirrel stands at vertex v0 : 
•  Squirrel ate fermented pumpkin so doesn’t know what he’s doing 
•  So jumps to random neighbor v1 of v0 

•  Then jumps to random neighbor v2 of v1 
•  etc 
•  Question: Where is squirrel after t steps? 
•  A: At some random location. 
•  OK, with what probability is squirrel at each vertex of the graph? 
•  Want to compute xt ∈ Rn, where 
•  xt(i) : probability squirrel is at node i at time t. 

v0 

v1 

v2 



xt → xt + 1 ? 
•  Simplification: all nodes have same degree d. 
•  x0 = (1, 0, 0, 0, 0) 
•  x0 → x1 ? 
•  if u1, u2,…, ud are the d neighbors of v0, then 
•  v1=ui with probability 1/d 
•  so x1 = (0, ½ , 0, 0, ½) 
•  x2 = (½, 0, ¼, ¼,0) 
•  … 

•  A =                               (adjacency matrix divided by d ) 

1 
2 

3 

4 
5 

½ 0 0 0 ½ 
0 ½ ½ 0 0 
½ 0 0 ½ 0 
0 0 ½ 0 ½ 
0 ½ 0 ½ 0 

Aij =probability of jumping to j if squirrel is at i 

x1= x0 A 
x2= x1 A  = x0 A2 

x3= x2 A =x0 A3 

…
 

xt= x0 At 



xt 
•  More general undirected graphs? 
•  A =adjacency matrix where row i is divided by the degree di of i 
•  xt= x0 At 
•  Computing xt ? 
•  Silvio will be disappointed if you don’t use… 
•  repeated squaring! 
•  Compute A →  A2 →  A4 → …→ At (if t is a power of 2; if not …) 
•  then do vector-matrix product 
•  How about limiting distribution xt as t→∞ ? 
•  e.g. what is x∞ in 5-cycle? 
•  x∞= (⅕, ⅕, ⅕, ⅕, ⅕) 

1 
2 

3 

4 
5 



Verifying xt → (⅕, ⅕, ⅕, ⅕, ⅕)  
•  Recall  

   A = 

•  x0 = [1             0             0             0             0         ] 
•  x1 = [0             0.5000    0             0             0.5000] 
•  x2 = [0.5000    0             0.2500    0.2500    0         ] 
•  x3 = [0             0.3750    0.1250    0.1250    0.3750] 
•  x4 = [0.3750    0.0625    0.2500    0.2500    0.0625] 
•  x5 = [0.0625    0.3125    0.1562    0.1562    0.3125] 
•  x6 = [0.3125    0.1094    0.2344    0.2344    0.1094] 
•  x7 = [0.1094    0.2734    0.1719    0.1719    0.2734] 
•  x8 = [0.2734    0.1406    0.2227    0.2227    0.1406] 
•  x9 = [0.1406    0.2480    0.1816    0.1816    0.2480] 
•  x10 =[0.2480    0.1611    0.2148    0.2148    0.1611] 
•  x11 =[0.1611    0.2314    0.1880    0.1880    0.2314] 
•  x12 =[0.2314    0.1746    0.2097    0.2097    0.1746] 
•  x13 =[0.1746    0.2206    0.1921    0.1921    0.2206] 
•  x14 =[0.2206    0.1833    0.2064    0.2064    0.1833] 

1 
2 

3 

4 
5 

½ 0 0 0 ½ 
0 ½ ½ 0 0 
½ 0 0 ½ 0 
0 0 ½ 0 ½ 
0 ½ 0 ½ 0 

x15 = [0.1833    0.2135    0.1949    0.1949    0.2135] 
x16 = [0.2135    0.1891    0.2042    0.2042    0.1891] 
x17 = [0.1891    0.2088    0.1966    0.1966    0.2088] 
x18 = [0.2088    0.1929    0.2027    0.2027    0.1929] 
x19 = [0.1929    0.2058    0.1978    0.1978    0.2058] 
x20 = [0.2058    0.1953    0.2018    0.2018    0.1953] 
x21 = [0.1953    0.2038    0.1986    0.1986    0.2038] 
x22 = [0.2038    0.1969    0.2012    0.2012    0.1969] 
x23 = [0.1969    0.2025    0.1991    0.1991    0.2025] 
x24 = [0.2025    0.1980    0.2008    0.2008    0.1980] 
x25 = [0.1980    0.2016    0.1994    0.1994    0.2016] 

xt= x0 At 



Proving xt → (⅕, ⅕, ⅕, ⅕, ⅕) ? 
•  Recall  

   A = 

•  Random idea: what are the eigenvalues of A ? 
•  A symmetric so 5 real eigenvalues 
•  λ1 = 1.0000,  λ2 = λ3 =0.3090, λ4 = λ5 = -0.8090 (thanks Matlab) 
•  coincidence: λ2 = λ3 and λ4 = λ5   (5-cylce is a special graph) 
•  non-coincidence (holds for any undirected graph*):  

–  largest eigenvalue =1 
–  all others have absolute value <1 

•  left eigenvector corresponding to λ1 = 1.0000? 
•  e1= (⅕, ⅕, ⅕, ⅕, ⅕) is a left eigenvector for λ1 

•  Wow. Why would xt → e1 as t→∞? 

1 
2 

3 

4 
5 

½ 0 0 0 ½ 
0 ½ ½ 0 0 
½ 0 0 ½ 0 
0 0 ½ 0 ½ 
0 ½ 0 ½ 0 



Proving xt → (⅕, ⅕, ⅕, ⅕, ⅕) ? 
•  Recall  

   A = 

•  λ1 = 1.0000,  λ2 = λ3 =0.3090, λ4 = λ5 = -0.8090 
•  e1= (⅕, ⅕, ⅕, ⅕, ⅕) 
•  Proof: choose e2, e3, e4, e5 so that eigenvectors form a basis  
•  (guaranteed by the spectral theorem since A is symmetric) 
•  so x0= a1 e1 + a2 e2 + a3 e3+ a4 e4 +a5 e5, for some a1, a2, a3 , a4 , a5 
•  Now xt= x0 At =  

      = a1 e1 At + a2 e2 At + a3 e3 At + a4 e4 At + a5 e5 At
 

      = a1 e1 λ1
t + a2 e2 λ2

t + a3 e3 λ3
t + a4 e4 λ4

t + a5 e5 λ5
t
 

      → a1 e1, as t→∞ 
•  since e1= (⅕, ⅕, ⅕, ⅕, ⅕) is a distribution, it must be that a1=1 
•  Hence xt→ (⅕, ⅕, ⅕, ⅕, ⅕), as t→∞ 

1 
2 

3 

4 
5 

½ 0 0 0 ½ 
0 ½ ½ 0 0 
½ 0 0 ½ 0 
0 0 ½ 0 ½ 
0 ½ 0 ½ 0 



More General Theorem 
•  Given directed graph G 
•  Take A = adjacency matrix where row i is divided by the out-degree di of i 
•  (Under mild conditions*) A has eigenvalue 1 with multiplicity 1 and all other 

eigenvalues will have absolute value <1   
•  Moreover, if e1 be the (unique) left eigenvector corresponding to eigenvalue 1, 
•  then e1  will have all components positive. 
•  Normalize it so that it is a distribution. 
•  Theorem: A random walk on G started anywhere will converge to distribution e1! 
•  e1 is called the “stationary distribution of G” 

•  (Fundamental Theorem of Markov Chains) 

•  Two obvious Questions: 
–  why is x∞ interesting? 
–  how fast does xt→x∞ ? 
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Pagerank 
•  No better proof that something is useful than having interesting applications J 
•  It turns out that random walks have a famous one: PageRank. 
•  PageRank of a webpage p ≈* Probability that a web-surfer starting from some 

central page (e.g. Yahoo!) and following random weblinks arrives at webpage p 
in infinite steps. 

•  How compute this probability? 
•  Form graph G = the hyperlink graph; 
•  Namely, G has a node for every webpage, and there is an edge from webpage p1 

to webpage p2 iff there is a hyperlink from p1 to p2. 
•  Compute stationary distribution of G, i.e. the left eigenvector of the (normalized 

by out-degrees) adjacency matrix A of G, corresponding to eigenvalue 1. 
•  How compute stationary distribution? 
•  Idea 1: Crawl the web, create giant A, solve eigenvalue problem. 
•  Runtime O(n3) using Gaussian elimination 
•  too much for n = size of the web 



Pagerank 
•  Graph G = the hyperlink graph 
•  Compute stationary distribution of G, i.e. the left eigenvector of the (normalized by 

out-degrees) adjacency matrix A of G, corresponding to eigenvalue 1. 
•  How compute stationary distribution? 
•  Different (better?) idea: 
•  Forget linear algebra; 
•  Start at some central page and do random walk for a few steps (how many?); 
•  Restart and repeat (how many times?); 
•  then take PageRank(p) ≈ empirical probability that random walk ended at p. 
•  If web-graph is well-connected*, hope that empirical distribution should be good 

approximation to stationary distribution for the right choice of “how many” above… 
•  or at least for the top components of the eigenvector, which are the most important 

for ranking the top results. 
•  *caveat: In reality, Pagerank corresponds to the stationary distribution of a random 

surfer who does the following at every step: with probability 15% jumps to a 
random page (called a restart), &with probability 85% jumps to a random neighbor. 

•  Same theory applies. 



Menu 

•  Minimum-cut 
•  Random walks in graphs 

– Pagerank 
– How fast does xt→x∞ ? 



“Mixing Time” 
•  Captures the speed at which xt→x∞ 

•  Speed depends on connectivity of G. 
•  Sometimes G is given to us and we can’t change it. 
•  But sometimes we design G . 
•  e.g. in card shuffling 
•  type of shuffle defines connectivity of the graph between 

deck configurations… 



Card Shuffling Graph 

… … 

“ ” : reachable via a particular move defined by shuffle 

stationary distribution of a correct shuffle? 
probability 1/52! on each permutation  

while performing the shuffle we jump from node to node of this graph 



Effect of Shuffle to Mixing Time 

- Top-in-at-Random:	
 take top card and stick it to random location	


- Riffle Shuffle: 

Number of repetitions to be close to uniform permutation?	


~300 repetitions	


Number of repetitions?	
 ~10	


Different shuffles have different mixing times. Examples:	


So different shuffles have different graphs with different mixing times.	




Summary 
Randomness is useful	

As are the other techniques we saw in this class	

When facing an algorithmic problem:	

•  understand it	

•  try brute force first	

•  then try to improve it using:	


•  a cool data structure such as an AVL tree/heap/hash table	

•  a cool algorithmic technique such as Divide and Conquer, or DP	

•  map it to a graph problem and use off the shelf algorithm such 
as BFS/DFS/Dijkstra/Bellman-Form/Topological Sort	

•  or modify these algorithms	


•  If everything else fails, maybe NP-hard? Try to reduce an NP-hard 
problem to your problem.	

•  Look at a catalog of NP-hard problems, find a similar problem to 
your problem and try to reduce that problem to your problem.	

•  Great hanging out every Tuesday and Thursday	

•  Evaluate class: http://web.mit.edu/subjectevaluation/evaluate.html	



