6.006- Introduction to Algorithms

Lecture 24
NP-completeness
(The Dismal Computer Science)

Prof. Constantinos Daskalakis

Tractable Problems
We have seen many problems that can be

solved in polynomial time.

e.g. finding the shortest path in a graph

e.g.2 sorting n numbers
e.g.3 finding the exit in a maze

e.g.4 finding the square root of an integer

etc
These problems are tractable.

Polynomial dependence in the input = mild

dependence on the input

true for reasonable input size
[but not for “Internet-size”,
or “galaxy-size” inputs]

In
tractable Problems
We have seen-many-problems that can™t be

solved in polynomial time.

e.g.?

Suggestion: Count from 1 to a given n
PIP21P21227217]7

OK, what if | phrase the problem as follows:

Observation: to represent n | just need to
provide O(log n) digits.

Unsolvable Problems?

Are there computational problems that cannot be solved?
let’s try PYTHON: is program P syntactically correct?
PYTHON can be solved; in particular the python compiler solves it.
HALTING: Does python program P on input | terminate ?
e.g.
»while True: continue
* does not terminate for any input
»print "Hello World!”
e terminates for any input
Suppose there exists an Algorithm A solving HALTING, i.e.
A(P,1)=1 if program P on input | terminates
A(P,1)=0, if program P on input | runs forever

HALTING PROBLEM

A(P,1)=1 if program P on input | terminates
A(P,1)=0, if program P on input | runs forever

COSTAS
» Input: Program P
» if A(P,P)=1, then enter infinite loop
» else if A(P,P)=0, then stop

Question: Does COSTAS(COSTAS) terminate?

» suppose it does, then ...
» suppose it does not, then...

Contradiction! So there is no algorithm that solves
HALTING. More in 6.045

PROBLEMS

HALTING
SOLVABLE
PROBLEMS
EXP
-
. count fro
P sort n 1ton
numbers nxn

checkers

N\

SOLVABLE WITHIN SOLVABLE WITHIN
POLY-TIME EXPONENTIAL-TIME

Menu

Classification of problems: P, EXP, unsolvable
Problems for which we can’t decide yet

the class NP

the P vs NP question

Knapsack Problem <«

Input: Wi
» Knapsack of (integer) size S
» Collection of n items

* Item i has (integer) size s; and (integer) value v,

»Input size: log S + 2. (log s +log v))
Goal: Fit maximum value into knapsack

»>i.e., choose subset of items with X, s,< S maximizing Z, v,
Gave a DP algorithm running in time O(n S).

Is there an algorithm that runs in time
poly(log S + 2, (log s, +log v/)) ?

Traveling Salesperson Problem (TSP)

Input: Undirected graph
with lengths on edges. A 2\ 8

Output: Shortest tour
that visits each vertex o
exactly once. 30

Best known algorithm: |
O(n? 2") time. c 28 D
|s there a poly-time one?

The CLIQUE problem

Input: Undirected graph G=(V,E)

Output: Largest subset C of V such
that every pair of vertices in C has
an edge between them.

Best known algorithm:
0(1.1888") time

Is there a poly-time one?

Menu

Classification of problems: P, EXP, unsolvable
Problems for which we can’t decide yet
Proving hardness of problems

the class NP

the P vs NP question

What problems are in P?

We've taught you ways to design polynomial-time
algorithms for many problems

So when faced with a new problem, you’ll try applying
them in various ways

What if you don’t succeed?
When can you give up?

Are there ways for you to know not to waste time trying in
the first place?

Can you prove there’s no poly-time algorithm?

In the problem of counting from 1 through n, the proof is
easy as the output itself is exponential in the input.

But what if the output is polynomial in the input?

Proving a Negative

* How prove there is no polynomial time
algorithm for a problem whose solution is
polynomial in length?

»i.e show that there is no algorithm of time O(n), OR
O(n?%), OR O(n3), ...

Short Answer: We don’t know how to prove such
statements.

Don’t even have general technique to show that
there is no O(n) algorithm

“Proving” a Negative: the Science Way

* How prove no perpetual motion machine?
»We can prove one exists by building it.

»We can’t prove none exists.

» Especially if only “evidence” is that we tried
and failed.

 Many have tried to build one and failed

» A preponderance of evidence that is impossible
* But maybe only idiots tried to build PMMs

» Maybe possible if someone from MIT tries?

A Stronger “Proof”

Prove that the “laws of physics” preclude its
existence.

Lots of smart people have tested these laws.

» Gives a real preponderance of evidence the laws
are correct.

If a PMM was possible, it would prove those

laws false.

So unless a very large number of smart people
are all wrong, there is no perpetual motion
machine.

Menu

Classification of problems: P, EXP, unsolvable
Problems for which we can’t decide yet

Proving hardness of problems
»hardness via algorithms

the class NP
the P vs NP question

Algorithmic Hardness “Proof”

Suppose you want evidence that there is no poly-
time algorithm for your problem Q.

Take a problem P where many scientists have
tried and failed to find a poly-time algorithm.

Prove that if you have a poly-time algorithm for
Q, you can use it to build a poly-time algorithm
for P.

Contrapositive: if there is no poly-time algorithm
for P, there is no poly-time algorithm for Q.

All the evidence from those scientists that P is
hard becomes evidence that Q is hard.

Example: Knapsack

* A “believed hard” problem is Partition:
» Given a set of n numbers summing to S.
» |s there a subset of numbers summing to S/2?

* We can use this to show Knapsack is hard
» Suppose we have an algorithm A for Knapsack.
» Want to use it to solve Partition. How?
» Given an input {s,,...,s,} to Partition.

» Consider Knapsack problem where item i has size s.
and value s, and knapsack size is 5/2.

» If there is a partition, you can fill the knapsack and get
value S/2.

» Otherwise, best achievable value is < S/2.

Example: Knapsack

* We now have an algorithm for Partition:

» Do a polynomial amount of work to turn the input to
Partition into an input to Knapsack.

» Call the hypothetical Knapsack algorithm.

» Do a polynomial (actually constant) amount of work
to turn the Knapsack answer into a Partition answer.

* If Knapsack result is S/2, return YES, else return NO
* |f there is a polynomial-time algorithm for
Knapsack, get one for Partition.

* Since we believe no polynomial-time algorithm
for Partition, conclude none exists for Knapsack.

Formalizing our ideas

* We will concentrate on Decision Problems
» These are problems that have a YES or NO answer

 Examples:
» Given an array, is it sorted in increasing order?
» Given a list of numbers, are there any duplicates?

» Given a Knapsack problem, is there a solution (that fits)
with total value at least V?

» Given a graph with positive edge lengths, is there an s-t
path of length less than L?

» Given a graph with edge lengths, is there an s-t path of
length greater than L?

» Given a graph with edge lengths, is there a traveling
salesman tour of cost at most C?

» Given a graph, does it have a clique of size K?

Reductions

Define a reduction from problem P to problem Q

» A polynomial-time algorithm A that takes an input X to
problem P and transforms it into an input Y to problem Q
such that:

P(X)=YES if and only if Q(Y)=YES.

If there is a poly-time algorithm for Q, the reduction gives

one for P Algorithm for P

Algorithm for

input X input Y Q Q(y)
toP toQ

Suppose X has size n.
Then Y=A(X) has size poly(n) (because A is poly-time)
So overall runtime is poly(|A(X)|) = poly(poly(n)) = poly(n).

Consequence

If there is a poly-time algorithm for Q, the
reduction from P to Q gives one for P.

Contrapositive: If we believe there is no poly-
time algorithm for P, we can conclude there is
none for Q.

Reduce Pto Q = “Q s at least as hard as P”
Order is important!

»0On the final, at least one person always reduces Q
to P and concludes Q is harder than P.

Summary so far

If problem P is reduced to problem Q,..
this shows that Q is at least as hard as P.

f people think P is hard, they’ll believe Q is
nard.

Problem: what is a plausibly hard P?

»|s there a problem that everyone agrees is hard
despite not being able to prove it?

Solution: Find a whole family of hard problems
that can be simultaneously reduced to Q.

Menu

Classification of problems: P, EXP, unsolvable
Problems for which we can’t decide yet

Proving hardness of problems
» hardness via reductions

the class NP
the P vs NP question

NP

A decision problem belongs to the class NP if:
» it always has a poly-size solution;

» whether a proposed poly-size solution is truly a solution can be
checked in polynomial-time.

We say that such problem can be solved in nondeterministic
polynomial time (NP).

In the following sense: We can (non-deterministically) guess
the solution, then in polynomial-time check whether our
guess is truly a solution.

E.g., LONG PATH: Is there an s-t path of length greater than L?
We can guess a path, then check if its length is larger than L.

Obstacle: too many possible guesses to simulate
deterministically.

The hardest problems in NP

A problem Q is NP-hard if every problem in NP can
be reduced to it

> i.e., a deterministic polynomial-time algorithm for Q can

be turned into a polynomial-time algorithm for any other
NP problem

» “At least as hard as any NP problem”

A problem is NP-complete if it is in NP and is NP-
hard

» “The hardest problem in NP”
Cook '73: There is an NP-complete problem!

Such problem is a good starting point for showing
other problems are hard, as it carries with it the
hardness of all problems in NP.

Menu

Classification of problems: P, EXP, unsolvable
Problems for which we can’t decide yet

Proving hardness of problems
» hardness via reductions

the class NP
the P vs NP question

Pvs NP

Many problems have been shown NP-complete

» Clique, Independent Set, TSP, Graph Coloring, 4-way
matching, Vertex Cover, Hamiltonian Path, Longest path,
Multiprocessor Scheduling, Max-Cut, Constraint Satisfaction,
Quadratic Programming, Integer Linear Programming, Disjoint
Paths, Subset Sum...

» So not just one, but many “hardest problems in NP”

In 50+ years, scientists haven’t found a polynomial-time
algorithm for any of them.

(A poly-time algorithm for one of them, implies a poly-
time algorithm for all, as all are reducible to each other)

The “P vs NP” problem, i.e. answering whether or not
there is a poly-time algorithm for any of these problems,
is one of the seven millennium prize problems.

The Clay Mathematics Institute offers S1million for its
answer.

Is P=NP?

