6.006- Introduction to Algorithms

Lecture 16
Alan Deckelbaum

Lecture overview

Shortest paths 111

— Bellman-Ford on a 2
DAG (CLRS 24.2)

— Dijkstra algorithm for
the case with non-

negative weights
(CLRS 24.3)

This graph has a special structure: DAG.
How to use it within Bellman-Ford?

E={(v;,v,); (Vivy)s (Va,v3)s (Vevs) |

~(v
2 4

)y

... first use topological sorting ...

4
())

E={(v;,v,); (Vv (Vo,v3); (Viv))) E={(v;,v,); (Vv3); (V3,03);5 (V3,0))f

2

-7,

... Bellman-KFord ...

E={(v;,v,); (vi5v3); (Vo,v3); (V3,v))

end of first iteration

and we are done !

the shortest paths from v,

Bellman-Ford algorithm on DAG

topologically sort the vertices V

(f:V—=A{l 2, ..., |V|}such that (u,v) e E=>f(u) <f(v))
arrange E in lexicographical order of (f(e.a), f(e.b)) O(n+m)

O—0O)

e.a e e.b

d[s] < 0; n[s] < s

for each v & V' {5} - initialization O(n)
do d|v]| < oo; w[v] <= nil/

do for each edge (u, v) € £ .)
do if d[v]> d[u] + w(u, v) one iteration of O(WZ)
then d[v] < d[u] + w(u, v) [relaxation steps
n[v] < u

-

for cach edge 4, vy— £)
do if d[v] >Xr w(u, v) - final steps not
then réporda negative cycle) ,00ded

... Why does this work? ...

* there are no cycles 1n a dag => even with
negative-weight edges, there are no
negative-weight cycles ...

* topological ordering implies a linear
ordering of the vertices; every path in a dag
is a subsequence of topologically sorted
vertex order; processing vertices in that
order, an edge can’t be relaxed more than
once ...

Proof of Correctness

Let t be an arbitrary vertex. Suffices to
show that we compute d[t]| properly.

Let s=s,, 5,, 5,, ..., 5,=t be a shortest path to
t. Show by induction that we compute each
d[s;] correctly.

d[s. ;] computed correctly by inductive
hypothesis.

(s.,,s.) relaxed AFTER d[s, ;| computed.

Review of Dijkstra

(Non-negative Edge Weights)
Problem: Given a directed graph G = (V, E) with
edge-weight function w : £ — R+, and a node s, find

the shortest-path weight o(s, v) (and a corresponding
shortest path) from s to each v in V.

Greedy iterative approach

1. maintain a set S of vertices whose shortest-path
distances from s are known.

2. at each step add to S the vertex v & /' — § whose
distance estimate from s is minimal.

3. update distance estimates of vertices adjacent to v.

Dijkstra’s algorithm

dls] <0
for cachvE /- {5}
do d[v] <= @ ~ initialization
SO
Q<V)
while O = O (O min-priority queue maintaining " —)
do 1 <— EXTRACT-MIN(Q)
S<—SU {u}
for each v € Adj|u] h
do if d[v] > d[u] + w(u, v) | relaxation
then d[v] %\ dlu] + w(u, v) steps

(Implicit DECREASE-KEY)

Dijkstra: Example

Initialization

O =V, a = EXTRACT-MIN(Q)

Dijkstra: Example

1st iteration

2nd iteration

Dijkstra: Example

3rd iteration

4th 1teration

Dijkstra: Example

5th iteration

6th 1teration

Dijkstra: Example

7th 1teration

&th 1teration

Dijkstra: Example

Oth 1teration

(17,h)*

7
Shortest-path tree € ,a)+@
3
(0’*)+
(7,d)"
5 2
@

Correctness — Part 1

Lemma. Initializing d[s] <= 0 and d[v] <= o for all
vE V— {s} establishes d[v] = o(s, v) forall v E T,
and this invariant 1s maintained over any sequence
of relaxation steps.

Proof. Recall relaxation step:
if d[v] > d[u] + w(u, v) set d[v] < d[u] + w(u, v)

dlu]

w(u, v

Correctness — Part 11

Theorem. Dijkstra’s algorithm terminates with
dlvl=0(s,v)forallveE V.

Proof.

e It suffices to show that d[v]| = o(s, v) for every v € V/
when v 1s added to S

* Suppose u 1s the first vertex added to S for which d[u]
> 0(s, u) . Let y be the first vertex in I/ — S along a
shortest path from s to u, and let x be its predecessor:

>

- ()

S, just before
adding 1.

Correctness — Part 11 (continued)
Case 1: y=u

* Since u 1s the first vertex violating the claimed invariant,
we have d[x] = o(s, x) at the time x was added to .

e Just after x was added to S, we therefore set d[u]| = o(s, u)
e This 1s a contradiction, since d[u] 1s never increased by
edge relaxation.

Correctness — Part 11 (continued)
Case2:y!=u

Q) (4
(5 0’0

e Since u 1s the first vertex violating the claimed invariant,
we have d[x]| = o(s, x)

* Since subpaths of shortest paths are shortest paths, 1t
follows that d|y] was set to o(s, x) + w(x, y) = 0(s,) just
after x was added to S

» Consequently, we have d[y] = 0(s, v) = (s, u) < d|u]

e But, d[y]| = d[u] since the algorithm chose u first => a
contradiction

Analysis of Dijkstra

e =
0 1 <— EXTRACT-MIN(Q)
(S« SU {u)

p
whil
V| /
tmes | jJeoree(u) »
times
N

for each v € Adj|u]
_ doifd[v]>du] +w(u,v)
then d|v| < d[uf + w(u, v)

DECREASE-KEY

Time = @(n) T EXTRACT-MIN ™ @(7’”) I DECREASE-KEY

Analysis of Dijkstra (continued)

Time = O(n) Tgxrpacrvin T O TDpcrEASE-KEY

O TgxtractMIN I DecrEase-Key — lotal

array O o(1) O(n?)
bimary g) O(gn) O(mlgn)
heap
Fibonacct O(lgn) O(1) O(m + nlgn)

heap amortized amortized worst case

