
6.006- Introduction to Algorithms 

Lecture 15 
Prof. Silvio Micali 



Shortest Paths in a Graph  
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Recall: Dijstra’s Algorithm 
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Makes sense when G has no negative cycles! 
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Notation 



A generic start 
d[s] ← 0 
π[s] ← s 
for each v ∈ V – {s} 

do d[v] ← ∞	


      π[v] ← nil    	



initialization 

Relaxation 
(Improvement)  

Step 



Of course, it will not stop when 
negative cycles exist 
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What if no negative cycle ....  
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What if no negative cycle ....  
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Analysis =  # of relaxations 

Need to be careful how you relax!  



HOW?  (Bellman Ford) 

Cost of one PASS   =  How many PASSES  ? 
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Ford’s Total Complexity = 

And if G=(V,E) had cycles? 

0 



Take Homes 



Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 

Proof.  By contradiction ... 

p = v0 vi vj vk

p0j pij pjk

pij’



Triangle inequality 

Theorem.  For all u, v, x ∈ V, we have 
δ(u, v) ≤ δ(u, x) + δ(x, v). 

u 

Proof. 

x 

v δ(u, v) 

δ(u, x) δ(x, v) 



Combinatorics vs. 
Combinatorial Optimization 

s … vn v2 v1 



“See you laters alligaters” 


