6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 12

Prof. Silvio Micali
CLRS 22.2-22.3

Graphs

. G=({V,E)
* I/ aset of vertices
V| denoted by n. Often: V ={1,...,n}
« E c V XV asetof edges (pairs of vertices)
|E'| denoted by m < nn-1) = 0(n?

Graph Flavors
 Directed: “edges have a direction” Le., (i,j) =i — j

» Undirected: “{i,j}not (i,j)”: (i,j) =(,i)=i—]
< n(n —1)/2 possible edges

Examples

Undirected Directed
 V={a,b,c,d} « V={ab,c}

* E=i{a,b}, {acj, ibey, = E=1{(ac), (a,b) (b,c), (c,b);
1b.d}, {c.d}}

O—® 0

Graphs model lots of stuff:

¢ Friendship
¢ Powergrids
¢ Maps
L 2

Why?
Functions are basic

F:X->Y
Relations are more basic!

RcXXY

Graph Power!

Computer Representation
Four representations with pros/cons

" Adjacency lists (of neighbors of each vertex)

Ih

Computer Representation
Four representations with pros/cons

" Adjacency lists (of neighbors of each vertex)

Searching Graphs

Finding all vertices connected to a given vertex s WLOGs =1

Class: Undirected Graphs
Recitation: Directed Ones

® s connected to t if thereisa path P from s tot

® P=5s=s5,5..,S =t such that {s;, s;41} € E

® Lengthof P =k (we count edges!)

€ Distance between s and t = length of shortest path from s to t

Plan
Pseudo?Code first for “mathematical” correctness
Pseudo Code next (implementation ideas) for complexity

Real Code home for getting an output!

Breadth First Search (Wrong)

All vertices initially unmarked, but s
1. Until all vertices are marked, mark all neighbors of currently marked vertices

Breadth First Search (Pseudo?)

All vertices initially unmarked, but s
1. Until no new vertices are marked, mark all neighbors of currently marked vertices

Example

C\ Claim:/ivrejr;isall vertice
d /" Proof:\QA the Board...

Breadth First Search (Pseudo?)

—Awmw—-—-rr <OZMmM—O MmO >

T A

Complexity?

At least: Pseudo Code or Implementation Details!

"

(

Marked
0

- O |O |||~

OO0 0 00O,

®(n?)for such graphs

Can it get worse?

Breadth First Search
(Better Pseudo Code)

All vertices initially unmarked, but s

1. Until no new vertices are marked, mark all neighbors of currently marked vertices

Adjacency L R i .
List Frontier = .—> W " h f Marked

“marked at last Step 2” 1‘ 0
“Move & process d” f11
dl +—ft| +—|w| T 1'2 """""""" O
___________________ Etc. ete, = g [1
........... wl o
®(n + m)for all graphs]
hl1

Can you do better?

Augmented Breadth First Search
=Shortest Path Alg

(Pseudo?)

Initially, s is marked 0, all other vertices are marked oo

1.1« 0
2. Find all neighbors of at least one vertex marked i. If none, STOP.

3. Mark all vertices found in (3) with i + 1.
4, i «i+1

Claim: Every vertex is marked with its distance form s
Proof: ...

Complexity: ...

Example (Pseudo?)
1

0 2
2@ IQ(/ @Iz V3

Example (Pseudo)
1 0 2

BFS Tree Structure

¢ Spanning Tree: subgraph (V',E") that
1.is a tree
2.V =V

(V',E") subgraph of (V,E) iff V' cV andE' Cc E

¢ Extra Structure:

r==—=7=1 r==—=7=1 r==—=7=1 r==—=7=1
| |

I

|

Nooooooo!!!!

Possible!
Possible Too

BFS Tree: Few Data, Very Informative!

Note!

Graphs model mazes.
But: Searching Graphs # Searching Mazes

1800s Depth First Search
(Pseudo?)

In spocken Englsh (sort of...)
How to visit the Louvre in an hour and come out
ALIVE!
No strings allowed!

(No questions either!)

Claim 1: No edge is traversed twice in the same direction

Claim 2: Upon Termination each edge has been traversed once in each direction

Hopcroft's & Tarjan’s DFS

¢ Mark edges rather than their “entrances” and “exits”
€ Number vertices (augmentation for future use)
¢ Remember your father node rather than the edge who discovered you

. Mark all edges “unused”. Forallv e V,#(v) = 0. Leti:= 0 and CoA :=s.
Cilei+1 #(CoA) « i
. If CoA has no unused edges, go to (4)

. Choose an unused edge CoA & u. Markeused. If#(u)#0goto(2). Else
F(u) < CoA CoA<u andgoto(1)

If#(CoA) = 1 HALT

. CoA « F(CoA) andgoto(2)

Thm: DFS Visits all vertices connected to s

Proof: ...

DFS Tree

@ Tree edges
@ Back edges

Odds & Ends

® Queues vs. Stacks
@ Strings??!

Good News

More Board Explanations!

Good Implications

More Reasons to come to class!

Enjoy it

Lecture is over!

Please walk calmly to the nearest
EXIT

