
6.006- Introduction to
Algorithms

Lecture 10
Prof. Constantinos Daskalakis

CLRS 8.1-8.4

Menu

•  Show that Θ(n lg n) is the best possible
running time for a sorting algorithm.

•  Design an algorithm that sorts in Θ(n) time.
•  Hint: maybe the models are different ?

Comparison sort
All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.
So the elements could be numbers, water-
samples compared on the basis of their
concentration in chloride, etc.

The best running time that we’ve seen for
comparison sorting is O(n log n) .

Is O(n log n) the best we can do?

Decision trees can help us answer this question.

- Nodes are suggested
comparisons:
 ai:aj means
compare ai to aj.

Decision-tree

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

A recipe for sorting n
things 〈a1, a2, …, an〉	
 ≥ ≤

- Branching direction
depends on outcome
of comparisons.

≥ ≤ ≥ ≤

≥ ≤ ≥ ≤

- Leaves are labeled with permutations corresponding to the
outcome of the sorting.

Decision-tree example

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai ≤ aj.
• The right subtree shows subsequent comparisons if ai ≥ aj.
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ ≤ aπ(n) was found.

9 ≥ 4 Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:	

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

≥ ≤ ≥ ≤

≥ ≤ ≥ ≤

Decision-tree example

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:	

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

≥ ≤ ≤

≥ ≤ ≥ ≤

9 ≥ 6

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai ≤ aj.
• The right subtree shows subsequent comparisons if ai ≥ aj.
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ ≤ aπ(n) was found.

Decision-tree example

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:	

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

≥ ≤ ≤

≥ ≥ ≤ 4 ≤ 6

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai ≤ aj.
• The right subtree shows subsequent comparisons if ai ≥ aj.
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ ≤ aπ(n) was found.

Decision-tree example

4 ≤ 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:	

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai ≤ aj.
• The right subtree shows subsequent comparisons if ai ≥ aj.
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ ≤ aπ(n) was found.

Decision-tree model
A decision tree can model the execution of
any comparison sort:
• One tree for each input size n.
• A path from the root to the leaves of the tree

represents a trace of comparisons that the
algorithm may perform.

• The running time of the algorithm = the length
of the path taken.

• Worst-case running time = height of tree.

Lower bound for decision-
tree sorting

Theorem. Any decision tree for n elements
must have height Ω(n log n) .
Proof. (Hint: how many leaves are there?)
•  The tree must contain ≥ n! leaves, since there
are n! possible permutations.
•  A height-h binary tree has ≤ 2h leaves.
•  For it to be able to sort it must be that:

 	
2h ≥ n!
 h ≥ log(n!) (log is mono. increasing)

 ≥ log ((n/e)n) (Stirling’s formula)
 = n log n – n log e
 = Ω(n log n) .

Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[j]∈{1, 2, …, k} .
• Output: B[1 . . n], a sorted permutation of A
• Auxiliary storage: C[1 . . k] .

Counting-sort example

A: 4 1 3 4 3

B:

1 2 3 4 5

C:
1 2 3 4

one index for each
possible key stored in A n=5, k=4

Loop 1: initialization

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 0

for i ← 1 to k
do C[i] ← 0

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 1

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 0 1

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 1

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 2

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

1 2 3 4

Loop 2: count frequencies

A: 4 1 3 4

B:

1 2 3 4 5

C: 1 0

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

3 2 2
1 2 3 4

[A parenthesis: a quick finish

A: 4 1 3 4

B:

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

Walk through frequency array and place
the appropriate number of each key in
output array…

 A parenthesis: a quick finish

A: 4 1 3 4

B: 1

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

 A parenthesis: a quick finish

A: 4 1 3 4

B: 1

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

 A parenthesis: a quick finish

A: 4 1 3 4

B: 1 3 3

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

 A parenthesis: a quick finish

A: 4 1 3 4

B: 1 3 3 4 4

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

B is sorted!
but it is not “stably sorted”…]

Loop 3: from frequencies to
cumulative frequencies…

A: 4 1 3 4

B:

1 2 3 4 5

C: 1 0 3 2 2
1 2 3 4

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

C': 1 1 2 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

1 2 3 4

Loop 3: from frequencies to
cumulative frequencies…

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

C': 1 1 3 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

1 2 3 4

Loop 3: from frequencies to
cumulative frequencies…

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

C': 1 1 3 5

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

1 2 3 4

Loop 3: from frequencies to
cumulative frequencies…

Loop 4: permute elements of A

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 1 3 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

1 2 3 4

Loop 4: permute elements of A

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 1 3 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

There are exactly 3 elements ≤A[5]. So
where should I place A[5]?

1 2 3 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 3 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A

Used-up one 3; update counter in C
for the next 3 that shows up...

1 2 3 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 2 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 2 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 2 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A

There are exactly 5 elements ≤A[4]. So
where should I place A[4]?

1 2 3 4

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 0 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 0 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 0 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

A: 4 1 3 4 3

B: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 3

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

Loop 4: permute elements of A
1 2 3 4

Counting sort
for i ← 1 to k

do C[i] ← 0
for j ← 1 to n

do C[A[j]] ← C[A[j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]

 C[A[j]] ← C[A[j]] – 1

using cumulative
frequencies build
sorted permutation

store in C the frequencies
of the different keys in A
 i.e. C[i] = |{key = i}|

store in C the cumulative
frequencies of different keys
in A, i.e. C[i] = |{key ≤ i}|

Θ(n)

Θ(k)

Θ(n)

Θ(k)

Θ(n + k)

Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

This does not seem useful for this example, but imagine a
situation where each element stored in A comes with some
“personalized information” (wait 2 slides…).

Radix sort

• Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix .)

• Digit-by-digit sort.

• Hollerith’s original (bad) idea: sort on most-
significant digit first.

• Good idea: Sort on least-significant
digit first with auxiliary stable sort.

Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

§ Two numbers that differ in
digit t are correctly sorted.

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

§ Two numbers that differ in
digit t are correctly sorted.

§ Two numbers equal in digit t
are put in the same order as
the input ⇒ correct order.

(just used stability property!)

Runtime Analysis of radix sort
• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.

• If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes Θ(n + 2r) time.

• So overall Θ(b/r (n + 2r)) time.
• Setting r=log n gives Θ(n) time per pass, or
 Θ(n b/log n) total

Example: b=32-bit word
r=8 8 8 8

Appendix: Punched-card
technology

• Herman Hollerith (1860-1929)
• Punched cards
• Hollerith’s tabulating system
• Operation of the sorter
• Origin of radix sort
• “Modern” IBM card
• Web resources on punched-card

technology
Return to last
slide viewed.

Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
 10 years to process.

• While a lecturer at MIT, Hollerith
 prototyped punched-card technology.

• His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

• He founded the Tabulating Machine Company in
1911, which merged with other companies in 1924
to form International Business Machines.

Punched cards
• Punched card = data record.
• Hole = value.
• Algorithm = machine + human operator.

Replica of punch
card from the
1900 U.S. census.
[Howells 2000]

Hollerith’s
tabulating
system

• Pantograph card
punch

• Hand-press reader
• Dial counters
• Sorting box

Figure from
[Howells 2000].

Operation of the sorter
• An operator inserts a card into

the press.
• Pins on the press reach through

the punched holes to make
electrical contact with mercury-
filled cups beneath the card.

• Whenever a particular digit
value is punched, the lid of the
corresponding sorting bin lifts.

• The operator deposits the card
into the bin and closes the lid.

• When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

Hollerith Tabulator, Pantograph, Press, and Sorter

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by
the
WWW Virtual
Punch-Card
Server.

• One character per column.

Web resources on punched-
card technology

• Doug Jones’s punched card index
• Biography of Herman Hollerith
• The 1890 U.S. Census
• Early history of IBM
• Pictures of Hollerith’s inventions
• Hollerith’s patent application (borrowed

from Gordon Bell’s CyberMuseum)
• Impact of punched cards on U.S. history

