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Menu 

•  Show that Θ(n lg n) is the best possible 
running time for a sorting algorithm. 

•  Design an algorithm that sorts in Θ(n) time. 
•  Hint: maybe the models are different ? 



Comparison sort 
All the sorting algorithms we have seen so far 
are comparison sorts: only use comparisons to 
determine the relative order of elements. 
So the elements could be numbers, water-
samples compared on the basis of their 
concentration in chloride, etc. 

The best running time that we’ve seen for 
comparison sorting is O(n log n) . 

Is O(n log n)  the best we can do? 

Decision trees can help us answer this question.  



- Nodes are suggested 
comparisons: 
 ai:aj means  
compare ai to aj. 

Decision-tree 

a1:a2 

a2:a3 

a1a2a3 a1:a3 

a1a3a2 a3a1a2 

a1:a3 

a2a1a3 a2:a3 

a2a3a1 a3a2a1 

A recipe for sorting n 
things 〈a1, a2, …, an〉	
 ≥ ≤ 

- Branching direction 
depends on outcome 
of comparisons. 

≥ ≤ ≥ ≤ 

≥ ≤ ≥ ≤ 

- Leaves are labeled with permutations corresponding to the 
outcome of the sorting. 



Decision-tree example 

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}. 
• The left subtree shows subsequent comparisons if ai ≤ aj. 
• The right subtree shows subsequent comparisons if ai ≥ aj. 
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) was found. 

9 ≥ 4 Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉:	


a1:a2 

a2:a3 

a1a2a3 a1:a3 

a1a3a2 a3a1a2 

a1:a3 

a2a1a3 a2:a3 

a2a3a1 a3a2a1 

≥ ≤ ≥ ≤ 

≥ ≤ ≥ ≤ 



Decision-tree example 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉:	


a1:a2 

a2:a3 

a1a2a3 a1:a3 

a1a3a2 a3a1a2 

a1:a3 

a2a1a3 a2:a3 

a2a3a1 a3a2a1 

≥ ≤ ≤ 

≥ ≤ ≥ ≤ 

9 ≥ 6 

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}. 
• The left subtree shows subsequent comparisons if ai ≤ aj. 
• The right subtree shows subsequent comparisons if ai ≥ aj. 
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) was found. 



Decision-tree example 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉:	


a1:a2 

a2:a3 

a1a2a3 a1:a3 

a1a3a2 a3a1a2 

a1:a3 

a2a1a3 a2:a3 

a2a3a1 a3a2a1 

≥ ≤ ≤ 

≥ ≥ ≤ 4 ≤ 6 

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}. 
• The left subtree shows subsequent comparisons if ai ≤ aj. 
• The right subtree shows subsequent comparisons if ai ≥ aj. 
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) was found. 



Decision-tree example 

4 ≤ 6 ≤ 9 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉:	


a1:a2 

a2:a3 

a1a2a3 a1:a3 

a1a3a2 a3a1a2 

a1:a3 

a2a1a3 a2:a3 

a2a3a1 a3a2a1 

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}. 
• The left subtree shows subsequent comparisons if ai ≤ aj. 
• The right subtree shows subsequent comparisons if ai ≥ aj. 
• Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) was found. 



Decision-tree model 
A decision tree can model the execution of 
any comparison sort: 
• One tree for each input size n.  
• A path from the root to the leaves of the tree 

represents a trace of comparisons that the 
algorithm may perform. 

• The running time of the algorithm = the length 
of the path taken. 

• Worst-case running time = height of tree. 



Lower bound for decision-
tree sorting 

Theorem.  Any decision tree for n elements 
must have height Ω(n log n) . 
Proof. (Hint: how many leaves are there?)   
•  The tree must contain ≥ n! leaves, since there 
are n! possible permutations. 
•  A height-h binary tree has ≤ 2h leaves. 
•  For it to be able to sort it must be that: 

   	
2h ≥  n!  
     h  ≥ log(n!)  (log is mono. increasing) 

  ≥ log ((n/e)n)  (Stirling’s formula) 
  = n log n – n log e 
  = Ω(n log n) .  



Sorting in linear time 

Counting sort: No comparisons between elements. 
• Input: A[1 . . n], where A[ j]∈{1, 2, …, k} . 
• Output: B[1 . . n], a sorted permutation of A 
• Auxiliary storage: C[1 . . k] . 



Counting-sort example 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 
1 2 3 4 

one index for each 
possible key stored in A n=5, k=4 



Loop 1: initialization 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 0 

for i ← 1 to k 
do C[i] ← 0 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 1 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 0 1 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 1 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 2 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

1 2 3 4 



Loop 2: count frequencies 

A: 4 1 3 4 

B: 

1 2 3 4 5 

C: 1 0 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1   ⊳ C[i] = |{key = i}| 

3 2 2 
1 2 3 4 



[A parenthesis: a quick finish 

A: 4 1 3 4 

B: 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 

Walk through frequency array and place 
the appropriate number of each key in 
output array… 



 A parenthesis: a quick finish 

A: 4 1 3 4 

B: 1 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 



 A parenthesis: a quick finish 

A: 4 1 3 4 

B: 1 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 



 A parenthesis: a quick finish 

A: 4 1 3 4 

B: 1 3 3 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 



 A parenthesis: a quick finish 

A: 4 1 3 4 

B: 1 3 3 4 4 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 

B is sorted! 
but it is not “stably sorted”…] 



Loop 3: from frequencies to 
cumulative frequencies… 

A: 4 1 3 4 

B: 

1 2 3 4 5 

C: 1 0 3 2 2 
1 2 3 4 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]   ⊳ C[i] = |{key ≤ i}| 



A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 

C': 1 1 2 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]   ⊳ C[i] = |{key ≤ i}| 

1 2 3 4 

Loop 3: from frequencies to 
cumulative frequencies… 



A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 

C': 1 1 3 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]   ⊳ C[i] = |{key ≤ i}| 

1 2 3 4 

Loop 3: from frequencies to 
cumulative frequencies… 



A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 

C': 1 1 3 5 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]   ⊳ C[i] = |{key ≤ i}| 

1 2 3 4 

Loop 3: from frequencies to 
cumulative frequencies… 



Loop 4: permute elements of A 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 1 3 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

1 2 3 4 



Loop 4: permute elements of A 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 1 3 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

There are exactly 3 elements ≤A[5]. So 
where should I place A[5]?  

1 2 3 4 



A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 3 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 

Used-up one 3; update counter in C 
for the next 3 that shows up... 

1 2 3 4 



A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 2 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 2 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 2 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 

There are exactly 5 elements ≤A[4]. So 
where should I place A[4]?  

1 2 3 4 



A: 4 1 3 4 3 

B: 3 4 

1 2 3 4 5 

C: 1 1 2 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 4 

1 2 3 4 5 

C: 1 1 2 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 4 

1 2 3 4 5 

C: 1 1 2 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 3 4 

1 2 3 4 5 

C: 1 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 3 4 

1 2 3 4 5 

C: 1 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 3 3 4 

1 2 3 4 5 

C: 1 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 1 3 3 4 

1 2 3 4 5 

C: 0 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 1 3 3 4 

1 2 3 4 5 

C: 0 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 1 3 3 4 

1 2 3 4 5 

C: 0 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



A: 4 1 3 4 3 

B: 1 3 3 4 4 

1 2 3 4 5 

C: 0 1 1 3 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

Loop 4: permute elements of A 
1 2 3 4 



Counting sort 
for i ← 1 to k 

do C[i] ← 0 
for j ← 1 to n 

do C[A[ j]] ← C[A[ j]] + 1   

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]     

for j ← n downto 1 
do  B[C[A[ j]]] ← A[ j] 

 C[A[ j]] ← C[A[ j]] – 1 

using cumulative 
frequencies build 
sorted permutation  

store in C the frequencies 
of the different keys in A 
   i.e. C[i] = |{key = i}| 

store in C the cumulative 
frequencies of different keys 
in A, i.e. C[i] = |{key ≤ i}| 

Θ(n) 

Θ(k) 

Θ(n) 

Θ(k) 

Θ(n + k) 



Running time 

If k = O(n), then counting sort takes Θ(n) time. 
• But, sorting takes Ω(n lg n) time! 
• Where’s the fallacy? 

Answer: 
• Comparison sorting takes Ω(n lg n) time. 
• Counting sort is not a comparison sort. 
• In fact, not a single comparison between 

elements occurs! 



Stable sorting 

Counting sort is a stable sort: it preserves 
the input order among equal elements. 

A: 4 1 3 4 3 

B: 1 3 3 4 4 

This does not seem useful for this example, but imagine a 
situation where each element stored in A comes with some 
“personalized information” (wait 2 slides…). 



Radix sort 

• Origin: Herman Hollerith’s card-sorting 
machine for the 1890 U.S. Census.  (See 
Appendix     .) 

• Digit-by-digit sort. 

• Hollerith’s original (bad) idea: sort on most-
significant digit first. 

• Good idea: Sort on least-significant 
digit first with auxiliary stable sort. 



Operation of radix sort 

3 2 9 
4 5 7 
6 5 7 
8 3 9 
4 3 6 
7 2 0 
3 5 5 

7 2 0 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
3 2 9 
8 3 9 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 



• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 



• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

§ Two numbers that differ in 
digit t are correctly sorted. 



• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

§ Two numbers that differ in 
digit t are correctly sorted. 

§ Two numbers equal in digit t 
are put in the same order as 
the input ⇒ correct order. 

(just used stability property!) 



Runtime Analysis of radix sort 
• Assume counting sort is the auxiliary stable sort. 
• Sort n computer words of b bits each. 
• Each word can be viewed as having b/r base-2r 

digits. 

• If each b-bit word is broken into r-bit pieces, 
each pass of counting sort takes Θ(n + 2r) time. 

• So overall Θ(b/r (n + 2r)) time.  
• Setting r=log n gives Θ(n) time per pass, or  
  Θ(n b/log n) total 

Example: b=32-bit word 
r=8 8 8 8 



Appendix: Punched-card 
technology 

• Herman Hollerith (1860-1929) 
• Punched cards 
• Hollerith’s tabulating system 
• Operation of the sorter 
• Origin of radix sort 
• “Modern” IBM card 
• Web resources on punched-card 

technology 
Return to last 
slide viewed. 



Herman Hollerith 
(1860-1929) 

• The 1880 U.S. Census took almost 
 10 years to process. 

• While a lecturer at MIT, Hollerith  
 prototyped punched-card technology. 

• His machines, including a “card sorter,” allowed 
the 1890 census total to be reported in 6 weeks. 

• He founded the Tabulating Machine Company in 
1911, which merged with other companies in 1924 
to form International Business Machines. 



Punched cards 
• Punched card = data record. 
• Hole = value.  
• Algorithm = machine + human operator. 

Replica of punch 
card from the 
1900 U.S. census.  
[Howells 2000] 



Hollerith’s 
tabulating 
system 

• Pantograph card 
punch 

• Hand-press reader 
• Dial counters 
• Sorting box 

Figure from 
[Howells 2000]. 



Operation of the sorter 
• An operator inserts a card into 

the press. 
• Pins on the press reach through 

the punched holes to make 
electrical contact with  mercury-
filled cups beneath the card. 

• Whenever a particular digit 
value is punched, the lid of the 
corresponding sorting bin lifts. 

• The operator deposits the card 
into the bin and closes the lid. 

• When all cards have been processed, the front panel is opened, and 
the cards are collected in order, yielding one pass of a stable sort. 

Hollerith Tabulator, Pantograph, Press, and Sorter 



Origin of radix sort 

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort: 

“The most complicated combinations can readily be 
counted with comparatively few counters or relays by first 
assorting the cards according to the first items entering 
into the combinations, then reassorting each group 
according to the second item entering into the combination, 
and so on, and finally counting on a few counters the last 
item of the combination for each group of cards.” 

Least-significant-digit-first radix sort seems to be 
a folk invention originated by machine operators. 



“Modern” IBM card 

So, that’s why text windows have 80 columns! 

Produced by 
the 
WWW Virtual 
Punch-Card 
Server. 

• One character per column. 



Web resources on punched-
card technology 

• Doug Jones’s punched card index 
• Biography of Herman Hollerith 
• The 1890 U.S. Census 
• Early history of IBM 
• Pictures of Hollerith’s inventions 
• Hollerith’s patent application (borrowed 

from  Gordon Bell’s CyberMuseum) 
• Impact of punched cards on U.S. history 


