6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 10

Prof. Constantinos Daskalakis
CLRS 8.1-8.4

Menu

» Show that ©(n Ig) 1s the best possible
running time for a sorting algorithm.

* Design an algorithm that sorts in ©(7) time.
» Hint: maybe the models are different ?

Comparison sort

All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.

So the elements could be numbers, water-
samples compared on the basis of their
concentration in chloride, etc.

The best running time that we’ve seen for
comparison sorting 1s O(nlogn).
Is O(nlogn) the best we can do?

Decision trees can help us answer this question.

Decision-tree

A recipe for sorting »
things (a,, a,, ..., a,)

- Nodes are suggested
comparisons:

a;:a; means a, 0,0 I

compare «a; to a;.

. L a,a,a aaa' aaa' aaa'
- Branching direction M . 2 3201

depends on outcome
of comparisons.

- Leaves are labeled with permutations corresponding to the
outcome of the sorting.

Decision-tree example

Sort (a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled a;a, fori,j € {1, 2,..., n}.

* The left subtree shows subsequent comparisons it g; < a..

* The right subtree shows subsequent comparisons if ¢, = a;.

* Each leaf contains a permutation {st(1), 7t(2),..., 7t(n)) to
indicate that the ordering a, |, < a,,, < - < a,,, was found.

Decision-tree example

Sort (a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled a;a, fori,j € {1, 2,..., n}.

* The left subtree shows subsequent comparisons it g; < a..

* The right subtree shows subsequent comparisons if ¢, = a;.

* Each leaf contains a permutation {st(1), 7t(2),..., 7t(n)) to
indicate that the ordering a, |, < a,,, < - < a,,, was found.

Decision-tree example

Sort (a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled a;a, fori,j € {1, 2,..., n}.

* The left subtree shows subsequent comparisons it g; < a..

* The right subtree shows subsequent comparisons if ¢, = a;.

* Each leaf contains a permutation {st(1), 7t(2),..., 7t(n)) to
indicate that the ordering a, |, < a,,, < - < a,,, was found.

Decision-tree example

Sort (a,, a,, a,)
=(9,4,6):

. . 4<6<9
Each internal node 1s labeled a;a, fori,j € {1, 2,..., n}.

* The left subtree shows subsequent comparisons it g; < a..

* The right subtree shows subsequent comparisons if ¢, = a..

J
* Each leaf contains a permutation {st(1), 7t(2),..., 7t(n)) to

indicate that the ordering a, |, < a,,, < - < a,,, was found.

Decision-tree model

A decision tree can model the execution of
any comparison Sort:
* One tree for each input size 7.

* A path from the root to the leaves of the tree
represents a trace of comparisons that the
algorithm may perform.

* The running time of the algorithm = the length
of the path taken.

» Worst-case running time = height of tree.

Lower bound for decision-
tree sorting

Theorem. Any decision tree for » elements
must have height Q(nlogn).

Proof. (Hint: how many leaves are there?)

* The tree must contain = ! leaves, since there
are n! possible permutations.

* A height-/ binary tree has < 2 leaves.

* For 1t to be able to sort it must be that:

2" = n!
h =log(n!) (log 1s mono. increasing)
> log ((n/e)") (Stirling’s formula)

=nlogn—nloge
= Q(n logn) .

Sorting in linear time

Counting sort: No comparisons between elements.

e Input: A[1 . . n], where A[j|E{1, 2, ..., k} .
* Quiput. B|1 . . n], a sorted permutation of 4
* Auxiliary storage: C[1 . . k].

Counting-sort example

one index for each

n=>5, k=4 possible key stored in A
A
12 3 4 5 1 2 3 4

A: 141113143 C: I
B: I

Loop 1: initialization

for:i<—1tok
do C[i] <=0

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

Loop 2: count frequencies

forj < 1 ton
do ClA[/]| <= ClA[/]] + 1

> Cli] = |ikey = ij]

|A parenthesis: a quick finish

Walk through frequency array and place
the appropriate number of each key in
output array...

A parenthesis: a quick finish

A parenthesis: a quick finish

A parenthesis: a quick finish

A parenthesis: a quick finish

2 4 1 2 3 4
1 | 343 C:1 11022
313|144

B 1s sorted!

but 1t 1s not “stably sorted”...]

Loop 3: from frequencies to
cumulative frequencies...

for:i<— 2tok
do Cli| < Cli] + C[i—1]

> Cli] = |ikey = i}]

Loop 3: from frequencies to
cumulative frequencies...

for:i<— 2tok
do Cli| < Cli] + C[i—1]

> Cli] = |ikey = i}]

Loop 3: from frequencies to
cumulative frequencies...

for:i<— 2tok
do Cli| < Cli] + C[i—1]

> Cli] = |ikey = i}]

Loop 3: from frequencies to
cumulative frequencies...

for:i<— 2tok
do Cli| < Cli] + C[i—1]

> Cli] = |ikey = i}]

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

B- There are exactly 3 elements <A[5]. So
y where should I place A[5]?

for ; < n downto |
do B|C[A[j]]] <= Al/]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

B 3 Used-up one 3, update counter in C
y for the next 3 that shows up...

for ; < n downto |
do B|C[A[j]]] <= Al/]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

B- 3 There are exactly 5 elements <A[4]. So
y where should I place A[4]?

for ; < n downto |
do B|C[A[j]]] <= Al/]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 |13]4]3 C:{1|1]1]4
B 313 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 | 11343 C:{1|1]1]4
B 313 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 | 11343 C:i1|1]1] 4
B 313 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 | 11343 C:10|1]1] 4
B:| 1|33 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 111343 C:10] 1|11 4
B:1 1|33 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

12 4 5 1 2 3 4
A4 111343 C:10 11|11 4
B:1 1|33 4

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Loop 4: permute elements of A

for ; < n downto |
do B[ClA| j]|] <= AlJ]
ClAlj]] < ClA4[j]] -

Counting sort

fori<—1tok
do Cli] <= 0
for;<— 1 ton store in C the frequencies

do C[A[]]] - C[A[]]] “1r of the different keys in 4 @(n)
J e C[i]=|{key = i}|

O (k)

do C[i] < C[i] + C[i—1] frequencies of different keys @(k)

fori<— 2tok store in C the cumulative
} in 4, i.e. Cli] = |{key < i}

for /<= n dOWl,ltO 1 . using cumulative
do B[CLA[/]]] <= AL/l - frequencies build O(n)
ClA[j1] <= Cl4[j]] - 1_ sorted permutation

O + k)

Running time

If &£ = O(n), then counting sort takes ©(7) time.
* But, sorting takes C2(» g n) time!

* Where’s the fallacy?

Answer:

* Comparison sorting takes Q(n1gn) time.
* Counting sort 1s not a comparison sort.

* In fact, not a single comparison between
elements occurs!

Stable sorting

Counting sort 1s a stable sort: 1t preserves
the input order among equal elements.

A 14|11]34 3

B:1 13 |3]|4)4

This does not seem useful for this example, but imagine a
situation where each element stored in 4 comes with some
“personalized information™ (wait 2 slides...).

Radix sort

* Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See

Appendix

@

)

* Digit-by-digit sort.

 Hollerith’s original (bad) 1dea: sort on most-
significant digit first.

* Good 1dea: Sort on least-significant
digit first with auxiliary stable sort.

Operation of radix sort

329
457
657
339
436
720
355

720
355
436
457
657
329
8339

720
329
436
339
355
457
657

329
355
436
457
657
720
339

X X

Correctness of radix sort

Induction on digit position

* Assume that the numbers
are sorted by their low-order
t— 1 digits.

* Sort on digit ¢

720
329
436
339
355
457
657

329
355
436
457
657
720
339

_

Correctness of radix sort

Induction on digit position

 Assume that the numbers
are sorted by their low-order

t— 1 digits.
* Sort on digit ¢

= Two numbers that differ in
digit 7 are correctly sorted.

720 329
329 355
436 436
339 457
355 657
457 720
657 339

_

Correctness of radix sort

Induction on digit position

* Assume that the numbers
are sorted by their low-order
t— 1 digits.

* Sort on digit ¢

= Two numbers that differ in
digit 7 are correctly sorted.

= Two numbers equal 1n digit ¢
are put 1n the same order as
the mnput = correct order.

(just used stability property!)

720 329
329 355
436—>436
339 457
355/657
457 720
657 339

_

Runtime Analysis of radix sort

» Assume counting sort 1s the auxiliary stable sort.
* Sort » computer words of b bits each.

* Each word can be viewed as having b/r base-2"

dlgltS =8 8 8 8
Example: b=32-bit word

* If each H-bit word 1s broken 1nto -bit pieces,
each pass of counting sort takes O(n + 27) time.

* So overall O(b/r (n + 27")) time.
* Setting r=log n gives ©(n) time per pass, or
O(n b/log n) total

Appendix: Punched-card
technology
 Herman Hollerith (1860-1929)

 Punched cards

 Hollerith’s tabulating system

* Operation of the sorter

* Origin of radix sort
e “Modern” IBM card

* Web resources on punched-card geium to 1ast
technology slide viewed.

Herman Hollerith
(1860-1929)

* The 1880 U.S. Census took almost
10 years to process.

 While a lecturer at MIT, Hollerith
prototyped punched-card technology.

 His machines, including a “card sorter,” allowed
the 1890 census total to be reported 1n 6 weeks.

* He founded the Tabulating Machine Company in
1911, which merged with other companies in 1924
to form International Business Machines.

Punched cards

* Punched card = data record.
* Hole = value.
* Algorithm = machine + human operator.

| ; :
4 WwWimMlo 1 5 o ST Rate] B i U S o R S R

s L) cl ING Wi M UEL]
uf e sC AL) " sP

-3
w

LM KJ KAN
5% W) Al E> Ik SA

flw 3 9 15

3 |wa 4 6 B2 0 % OM OH W oW H oW Replica Of punCh
" ir._: ORI R card from the

tn Fio U5 Ea (4 1900 U.S. census.
(e o@ [Howells 2000]

l

'
1
5
2 - i
4 |chi25 2 25 3N'"3 w02 8 14
{ 1
8| o 3B 4 4 50!
!]

Lin 8 60 85 0

r OK © 9

ot MR b

ol

4 |2 NN 41 C 6 QI T N4 CE Wz Sw CE Wa PR W
(- B B Bt s BN sl . OIS sl TR Ou] T S8 - HEty] i Fa & CFoFu me GF Ho W48
418 12 lO! el8 215 9 3{A 6 |P0 Dk FroW DO Froo 3 Au g sea I
. Aty ;
g f.,9 3!186 O 4 Un, 0|01 Ru 8o (O Ru 39 Sz % NS

a E!l{(in

mMiADG

THE FIRST

"ROLLERITH’

Elecerical

- CENSUS COUNTING MACHINE
— 1890
e e
i : e =
d 15 A e SLECTRICALLY
IIOllerlth ? S s PSS —— SORTING R0
e .. 5 \,»,“‘ S oS S 4 s ”
' B s .
\ Figure from

tab ulating } | . [Howells 2000].
system

* Pantograph card
punch

* Hand-press reader

*Dial counters

*Sorting box

=AND STACKER

Operation of the sorter

‘0000000020
0000000000 |/
2000000000 |
0000000000 ||
:

* Pins on the press reach through e "
the punched holes to make g <7 e
electrical contact with mercury- |
filled cups beneath the card.

* Whenever a particular digit
value 1s punched, the lid of the
corresponding sorting bin lifts.

* An operator 1nserts a card into
the press.

* The operator deposits the card

Hollerith Tabulator, Pantograph, Press, and Sorter

into the bin and closes the lid. /

* When all cards have been processed, the front panel 1s opened, and
the cards are collected in order, yielding one pass of a stable sort.

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

“Modern” IBM card

* One character per column.

8123456 789ABCDEFGHIJKLMNOPQRSTUVHKYZ INTRODUCTON TO ALGORITHMS 89-/24,2081
(LI | na i 1l
(LI (] im nim 1
| GEEEEREREREREREREREEE] | |] |]]] G EEle]] Gl EElErrerere] ffa] [(][]] | Tl
il11111111M11111101@1112119121214219213111219219131211219213M111113111111M11M111M1111111

2z2022222222022222222022222220222222222222222222222222222222220222202202222222222 PrOduced by

333033333333 0233333320333333230333333323302223300232023320333201333333333333333333333 tlle

44440444444440444444440444444404444444444400444444444444444404444440444444444444 \AZ\A]\A]-\]-
irtual

5555555555555 5555555505555555 5555555555555 555555555555555555555555555555555

S FEEEEEEE FEEEEEEE FEEEEEE FEEEEEEE FEEE EEE S B I)IUJCll-(jar(1

rkEEkEl skl rkkEkkEEil rhkEkkEkEl CEE R kEl R E;eIW/eI:

88588588828 528585888212385288528135588281382882888388288888828888888818288888288838888888888

99999999390999999990999999930999999315022099999999999999909999990999999999999999

So, that’s why text windows have 80 columns!

Web resources on punched-
card technology

* Doug Jones’s punched card index

* Biography of Herman Hollerith

e The 1890 U.S. Census

 Early history of IBM

* Pictures of Hollerith’s inventions

* Hollerith’s patent application (borrowed
from Gordon Bell’s CyberMuseum)

 Impact of punched cards on U.S. history

