
6.006- Introduction to
Algorithms

Lecture 9
Prof. Constantinos Daskalakis

CLRS: 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4.

Last time:
 - Mergesort for sorting n elements in O(n log n)

This time:

vs

Lecture Overview

 - Heapsort: a new O(n log n) sorting algorithm
 - Heaps

 - Priority Queue

Priority Queue
Any data structure storing a set S of elements, each associated
with a key, which supports the following operations:

increase_key(S, x, k) :

insert element x into set S 	

return element of S with largest key	

return element of S with largest key and
remove it from S

change the key-value of element x to k, if
k is larger than current value

insert(S, x) :

max(S) :

extract_max(S) :

A=	

Heap

An implementation of a priority queue. It is an array A,
visualized as a nearly complete binary tree.

Max-Heap Property: The key of a node is ≥ than the keys of its
children.

Visualizing an Array as a Tree

Root of tree: first element in the array, corresponding to index = 1

If a node’s index is i then:

returns index of node's parent, e.g. parent(5)=2

returns index of node's left child, e.g. left(4)=8
returns index of node's right child, e.g. right(4)=9

Note: No pointers required!

A=	

Heap-Size Variable

For flexibility we may only need to consider the first few elements
of an array as part of the heap.

A[1],…, A[heap-size];	

 The variable heap-size denotes what prefix of the array is part
of the heap:

- Max_Heapify (A , i)
Correct a single violation of the heap property occurring at
the root i of an otherwise perfect subtree…	

Operations with Heaps

Setting: Assume that the trees rooted at left(i) and right(i) are
max-heaps, but element A[i] violates the max-heap property;	

 Goal: fix the subtree rooted at i.	

How? Trickle element A[i] down the tree to its right place. 	

i.e. A[i] is smaller than at least one of A[left(i)] or A[right(i)].	

Max_Heapify (Example)

Max_Heapify (Example)

Max_Heapify (Example)

Max_Heapify (Pseudocode)

Find the index of the largest
element among A[i], A[left(i)]
and A[right(i)]

If this index is different than i,
exchange A[i] with largest
element; then recurse on subtree

Max_heapify (A, i)	

If A[i] is smaller than both A[left(i)] and A[right(i)] why do I insist on
swapping with largest and not with any one of them, arbitrarily?

- Max_Heapify (A , i)

Correct a single violation of the heap property occurring
at the root i of an otherwise perfect subtree.
Time O(log n).	

Operations with Heaps

- Build_Max_Heap (A)
Produce a max-heap from an unordered array A.	

Build_Max_Heap(A)

Convert A[1…n] to a max heap.	

Observation: Elements are leaves of the tree	

because 2i > n, for all	

so heap property may only be violated at nodes 1… of the tree	

Build_Max_Heap (Example Execution)

Build_Max_Heap (Example Execution)

Build_Max_Heap (Example Execution)

Build_Max_Heap (Example Execution)

Running Time: O(n log n), since I need to Heapify O(n) times.

Observe, however, that Heapify only pays O(1) time for the nodes
that are one level above the leaves, and in general O(ℓ) for the nodes
that are ℓ levels above the leaves. O(n) time overall!

- Max_Heapify (A , i)
- Correct a single violation of the heap property occurring
at the root i of an otherwise perfect subtree.
- Time O(log n).	

Operations with Heaps

- Build_Max_Heap (A)
- Produce a max-heap from an unordered array A.
- Time O(n)	

- Heapsort (A)
- Sort an array A using heaps.

The Naïve Algorithm…
Sorting Strategy:

2. Find maximum element A[i] of array A[1…last_element];
3. Swap A[i] and A[last_element];

5. Go to step 2

1. last_element = n;

4. last_element = last_element - 1;

Find largest element of array, place it in last position; then find
the largest among the remaining elements, and place it next to
the largest, etc…

In notation:

We have a fast data structure for step 2!
(which is also the most costly)

O(n2)

Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

Heapsort

Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element; this is A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

Heapsort

Swap elements A[10] and A[1]	

Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

Heapsort

Swap elements A[10] and A[1]	
heap_size = heap_size-1	

Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

Heapsort

Heapsort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

6. Go to step 2.

Heapsort

Swap elements A[9] and A[1]	

Heapsort

Max_Heapify(A,1)	

Heapsort

Swap elements A[8] and A[1]	

and so on…

Heapsort Running Time

- followed by n iterations:
in each iteration a swap and a heapify is made;
so O(log n) time spent in each iteration.

Overall O(n log n)

- O(n) to build heap

Operations with Heaps Summary

Insert, Extract_Max ?

produce a max-heap from an unordered
array in O(n);	

correct a single violation of the heap property
occurring at the root of a subtree in O(log n);	

sort an array of size n in O(n log n) using heaps

O(log n)

Build_Max_Heap :

Max_Heapify :

Heapsort :

Heapsort in a Nutshell

Max-Heaps vs Min-Heaps

Max Heaps satisfy the Max-Heap Property :

 for all i, A[i] ≥ max{ A[left(i)] , A[right(i)]}

Min Heaps satisfy the Min-Heap Property :

 for all i, A[i] ≤ min{ A[left(i)] , A[right(i)]}

Max-Heaps vs Min-Heaps

Max Heaps satisfy the Max-Heap Property:

 for all i, A[i] ≥ max{ A[left(i)] , A[right(i)]}

OK, If left(i) or right(i) is undefined, replace A[left(i)], respectively
A[right(i)], by - in the above condition. In particular, if node i has
no children, the property is trivially satisfied.

Min Heaps satisfy the Min-Heap Property:

If left(i) or right(i) is undefined, replace A[left(i)], respectively
A[right(i)], by + in the above condition. In particular, if
node i has no children, the property is trivially satisfied.

 for all i, A[i] ≤ min{ A[left(i)] , A[right(i)]}

