
6.006- Introduction to 
Algorithms 

Lecture 9 
Prof. Constantinos Daskalakis 

CLRS:  2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4. 



Last time:  
 - Mergesort for sorting n elements in O(n log n) 

This time: 

vs 



Lecture Overview 

  - Heapsort: a new O(n log n) sorting algorithm 
  - Heaps 

 - Priority Queue 



Priority Queue 
Any data structure storing a set S of elements, each associated 
with a key, which supports the following operations: 

increase_key(S, x, k) : 

insert element x into set S 	  

return element of  S with largest key	  

return element of  S  with largest key and 
remove it from S 

change the key-value of element x to k, if 
k is larger than current value 

insert(S, x) : 

max(S) : 

extract_max(S) :  



A=	  

Heap 

An implementation of a priority queue. It is an array A, 
visualized as a nearly complete binary tree. 

Max-Heap Property: The key of a node is  ≥  than the keys of its 
children. 



Visualizing an Array as a Tree 

Root of tree: first element in the array, corresponding to index = 1 

If a node’s index is i then: 

returns index of node's parent, e.g. parent(5)=2 

returns index of node's left child, e.g. left(4)=8 
returns index of node's right child, e.g. right(4)=9 

Note: No pointers required!  

A=	  



Heap-Size Variable 

For flexibility we may only need to consider the first few elements 
of an array as part of the heap. 

A[1],…, A[ heap-size];	  

 The variable heap-size denotes what prefix of the array is part 
of the heap: 



- Max_Heapify (A , i) 
Correct a single violation of the heap property occurring at 
the root i of an otherwise perfect subtree…	  

Operations with Heaps 

Setting: Assume that the trees rooted at left(i) and right(i) are 
max-heaps, but element A[i] violates the max-heap property;	  

 Goal: fix the subtree rooted at i.	  

How? Trickle element A[i] down the tree to its right place. 	  

i.e. A[i] is smaller than at least one of A[left(i)] or A[right(i)].	  



Max_Heapify (Example) 



Max_Heapify (Example) 



Max_Heapify (Example) 



Max_Heapify (Pseudocode) 

Find the index of the largest 
element among A[i], A[left(i)] 
and A[right(i)] 

If this index is different than i, 
exchange A[i] with largest 
element; then recurse on subtree 

Max_heapify (A, i)	  

If A[i] is smaller than both A[left(i)] and A[right(i)] why do I insist on 
swapping with largest and not with any one of them, arbitrarily? 



- Max_Heapify (A , i) 

Correct a single violation of the heap property occurring 
at the root i of an otherwise perfect subtree. 
Time O(log n).	  

Operations with Heaps 

- Build_Max_Heap (A ) 
Produce a max-heap from an unordered array A.	  



Build_Max_Heap(A) 

Convert   A[1…n] to a max heap.	  

Observation: Elements                                 are leaves of the tree	  

because  2i > n, for all	  

so heap property may only be violated at nodes 1…          of the tree	  



Build_Max_Heap (Example Execution) 
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Build_Max_Heap (Example Execution) 



Build_Max_Heap (Example Execution) 

Running Time: O( n log n), since I need to Heapify O(n) times. 

Observe, however, that Heapify only pays O(1) time for the nodes 
that are one level above the leaves, and in general O(ℓ) for the nodes 
that are ℓ levels above the leaves. O(n) time overall! 



- Max_Heapify (A , i) 
- Correct a single violation of the heap property occurring 
at the root i of an otherwise perfect subtree. 
- Time O(log n).	  

Operations with Heaps 

- Build_Max_Heap (A) 
- Produce a max-heap from an unordered array A. 
- Time O(n)	  

- Heapsort (A) 
- Sort an array A using heaps. 



The Naïve Algorithm… 
Sorting Strategy: 

2. Find maximum element A[i] of array A[1…last_element]; 
3. Swap A[i] and A[last_element]; 

5. Go to step 2 

1. last_element = n; 

4. last_element = last_element - 1; 

Find largest element of array, place it in last position; then find 
the largest among the remaining elements, and place it next to 
the largest, etc… 

In notation: 

We have a fast data structure for step 2!  
(which is also the most costly) 

O(n2) 



Heapsort 
Sorting Strategy: 

1. Build Max Heap from unordered array; 



Heapsort 



Heapsort 
Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element; this is A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 



Heapsort 

Swap elements A[10] and A[1]	  



Heapsort 
Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 

4. Discard  node n from heap  
   (by decrementing heap-size variable) 



Heapsort 

Swap elements A[10] and A[1]	  
heap_size = heap_size-1	  



Heapsort 
Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 

4. Discard  node n from heap  
   (by decrementing heap-size variable) 

5. New root may violate max heap property, but its 
children are max heaps. Run max_heapify to fix this. 



Heapsort 



Heapsort 
Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 

4. Discard  node n from heap  
   (by decrementing heap-size variable) 

5. New root may violate max heap property, but its 
children are max heaps. Run max_heapify to fix this. 

6. Go to step 2. 



Heapsort 

Swap elements A[9] and A[1]	  



Heapsort 

Max_Heapify(A,1)	  



Heapsort 

Swap elements A[8] and A[1]	  



and so on… 



Heapsort Running Time 

- followed by n iterations: 
in each iteration a swap and a heapify is made;  
so O(log n) time spent in each iteration. 

Overall O(n log n) 

- O(n) to build heap 



Operations with Heaps Summary 

Insert, Extract_Max ? 

produce a max-heap from an unordered 
array in O(n);	  

correct a single violation of the heap property 
occurring at the root of a subtree in O(log n);	  

sort an array of size n in O(n log n) using heaps 

O(log n) 

Build_Max_Heap : 

Max_Heapify : 

Heapsort :  



Heapsort in a Nutshell 



Max-Heaps vs Min-Heaps 

Max Heaps satisfy the Max-Heap Property :  

 for all i,   A[i] ≥ max{ A[left(i)] , A[right(i)]} 

Min Heaps satisfy the Min-Heap Property :  

 for all i,   A[i] ≤ min{ A[left(i)] , A[right(i)]} 



Max-Heaps vs Min-Heaps 

Max Heaps satisfy the Max-Heap Property:  

 for all i,   A[i] ≥ max{ A[left(i)] , A[right(i)]} 

OK, If  left(i) or right(i) is undefined, replace A[left(i)], respectively 
A[right(i)], by -     in the above condition.  In particular, if node i has 
no children, the property is trivially satisfied. 

Min Heaps satisfy the Min-Heap Property:  

If  left(i) or right(i) is undefined, replace A[left(i)], respectively 
A[right(i)], by +      in the above condition.  In particular, if 
node i has no children, the property is trivially satisfied. 

 for all i,   A[i] ≤ min{ A[left(i)] , A[right(i)]} 


