
6.006- Introduction to
Algorithms

Lecture 7
Prof. Silvio Micali

Congratula*ons!	

Sit	 down	 	
Focus	 	 	 	 	 	 	 	 -‐-‐-‐AKA	 Relax	 (outside	 MIT)	 	
Enjoy	 	

Plan	 for	 Today:	 	
3	 new	 Ideas,	 2	 of	 which	 GREAT!	

Vote	 at	 the	 end…	

How	 to	 convey	 these	
new	 cool	 iDEAS?	

Hashing!

VIA: DYNAMIC DICTIONARIES

Idea	 1	

Dynamic Dictionaries

• 

too small è load high, operations slow
too large è high initialization cost, wasted space

Wanted: m=Θ(n) at all times

potentially more cache-misses

Solution: Resize
• 

(For	 simplicity:	 ignore	 HashTime)	

When to resize?
• 

Amortized Analysis
• 

Deletions?
• 

Summary

•  Arbitrary sequence of insert/delete/find
•  O(1) amortized time per operation

Welcome	 to:	 	 	 	 	 	 	 	
On-‐Line	 Algorithms!	

Alg	

’	 ’	 ’	 ’	 ’	

Ignorance	 vs.	 Omniscience	

OPEN ADDRESSING

Idea	 2	

U :	 universe of all possible keys-huge set

h(k1)	

h(k3)	

h(k2)	 =	 h(k4)	

:	 actual keys-small set, but not known when
designing data structure

K	

item3	

item1	

item2	 item4	

K

U

Recall Chaining…

• 

Universe	 of	 keys	 Probe	 number	 Bucket	

1	
2	

m-1

collision	

collision	

collision	

free	 spot!	 itemk

other	 item	

other	 item	

other	 item	

Open Addressing (example)

Operations

Insert:
§  Probe till find empty bucket, put item there

Search:
§  Probe till find item (return with success)
§ Or find empty bucket (return with failure)

•  Because if item inserted, would use that empty bucket

Delete:
§  Probe till find item
§  Remove, leaving empty bucket

Problem with Deletion

Consider the following sequence:
§  Insert x
§  Insert y

•  suppose probe sequence for y passes x bucket
•  store y elsewhere

§ Delete x (leaving hole)
§  Search for y

•  Probe sequence hits x bucket
•  Bucket now empty
•  Conclude y not in table (else y would be there)

Solution for deletion

•  When delete x
§  Leave it in bucket, but mark it deleted

•  Future search for x sees x is deleted
§  Returns “x not found”

•  “Insert z” probes may hit x bucket
§  Since x is deleted, overwrite with z
 (So keeping deleted items doesn’t waste space)

What probe sequence?

Linear probing

• 

Ø	
1	

m-1

cluster

if	 h(k,1)	 is	 any	 of	
these,	 the	 cluster	
will	 get	 bigger	

i.e. the bigger the cluster is, the
more likely it is to grow larger,
since there are more opportunities
to make it larger…

•  E.g.,	 0.1	 <	 α	 <	 0.99,	 cluster	 size	 Θ(log	 n)	
•  Wrecks	 our	 constant-‐*me	 opera*ons	

Double Hashing
• 

E.g., m=2r g(k) odd

Performance of Open Addressing

•  Operation time is length of probe sequence
•  How long is it?
•  In general, hard to answer.
•  If h(k,i) as before, then we “can” make the

 Uniform Hashing Assumption (UHA):
§  Probe sequence= h(k,1) h(k,2) … h(k,m) is a

uniform random permutation of [1..m]
Note: this is different to the simple uniform
hashing assumption (SUHA))

Analysis under UHA

Suppose:
§  a size-m table contains n items
§ we are using open addressing
§ we are about to insert new item

Q: Probability first prob successful?

Why?	 From	 UHA,	 probe	 sequence	 random	 permutaKon	
Hence,	 first	 posiKon	 probed	 randomly	
m-‐n	 out	 of	 the	 m	 slots	 are	 unoccupied	

Analysis (II)
Q: If first probe unsuccessful, probability second
prob successful?

Why?
•  From UHA, probe sequence random permutation

m− n

m− 1 ≥ m− n

m
= p

• Hence, first probed slot is random; the second probed
slot is random among the remaining slots, etc.
• Since first probe unsuccessful, it probed an occupied slot
• Hence, the second probe is choosing uniformly from m-1
slots, among which m-n are still clean

Analysis (III)

•  If first two probes unsuccessful, probability
third prob successful?

m− n

m− 2
≥ m− n

m
= p

•  …

è every trial succeeds with probability ≥p

expected number of probes till success? ≤ 1
p

=
1

1− α

e.g. if α=90%, expected number of probes is at most 10

Open Addressing vs. Chaining

•  Open addressing skips linked lists
§  Saves space (of list pointers)
§  Better locality of reference

•  Array concentrated in m space
•  So fewer main-memory accesses bring it to cache
•  Linked list can wander all over memory

•  Open addressing sensitive to load α	

§ As α à 1, access time shoots up

1
1− α

1
1− α

What	 IF?	

ADVANCED HASHING ?
covered	 in	 recita*on	 (for	 those	 who	 care)	

VIA UNIVERSAL HASHING

Idea	 3	

Goal

• 

DEF: Universal Hash Family
• 

• 
Proof:	

Welcome to Probabilism!

Crucial because:

1. The Adversary wants to harm you

2. To harm you he must know what you’ll be doing

3. He cannot know if you yourself do not know!

And

4. SM’s Law: All sufficient complex systems are adversarial!

Cryptography

Adversary	 picks	 the	 sequence	 of	 keys	 you	 must	 hash	

Adversary	 learns	 when	 he	 has	 caused	 a	 collision	

And	 yet…	

“Cryptographers	 never	 sleep”	
SM

Credits
Goldenstateofmind.com	

SMgraphics.home	

Vote!

Next Week: Sorting

Teenagegirlsvslife.blogspot.com	

Better? Perfect Hashing!

•  Hash table with zero collisions
•  So don’t need linked lists
•  Can’t guarantee for arbitrary keys
•  But if you know keys in advance, can quickly

find a hash function that works
§  E.g. for a fixed dictionary

Summary

•  Hashing maps a large universe to a small range
•  But avoids collisions
•  Result:

§  Fast dictionary data structure
§  Fingerprints to save comparison time

•  Next week: sorting

NOT COVERED IN CLASS

Fingerprinting

•  File backup service
§ Major cost in time and money: bandwidth

•  How decide whether a file has changed?
§ And thus needs new backup

•  Send whole file?
§  Too expensive

•  Send hash of file (treating file as big number)
§ Only send file if hash differs
§ Might make a mistake, if hash same

What signature?
•  File x and backup y, length n bits
•  Treat as n-bit numbers
•  Pick random prime number p in [2..n]
•  Hash/compare x (mod p) vs. y (mod p)

§  Send log n bits
•  False negative if

§  x and y different
§  but x (mod p) = y (mod p)
§  i.e. (x-y) (mod p) = 0
§  i.e. p is a factor of x-y

What are the odds?

•  How many prime factors does x-y have?
§  It’s an n-bit number
§  It’s the produce of its factors p1 .. pk
§  Each pi ≥ 2
§  So (x-y) = p1p2..pk ≥ 2k

§  So k ≤ log2 n prime factors
•  How many primes in range [1..n] ?

§  Prime number theorem says about n/ln n
§  So, Pr[pick wrong factor] = (log n)/(n/ log n)
§  For better safety, pick bigger prime

Randomized Algorithms

•  Hashing/Fingerprinting make random choices
•  Then you prove they probably work
•  Prevent adversary from giving you a bad input
•  Lot of applications in algorithms design

§  Take 6.856 some day

Another Approach

•  Algorithm
§ Keep m a power of 2 (for faster computation)
§ Grow (double m) when n ≥ m
§  Shrink (halve m) when n ≤ m/4

•  Analysis
§  Just after rebuild: n=m/2
§ Next rebuild a grow à at least m/2 more inserts

•  Amortized cost O(2m / (m/2)) = O(1)
§ Next rebuild a shrink à at least m/4 more deletes

•  Amortized cost O(m/2 / (m/4)) = O(1)

