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LAST TIME… 



Dictionaries, Hash Tables 
•  Dictionary: Insert, Delete, Find a key 

–  can associate a whole item with each key 
•  Hash table  

–  implements a dictionary, by spreading items over an array 
–  uses hash function  

h: Universe of keys (huge) à Buckets (small) 

–   Collisions: Multiple items may fall in same bucket 
–   Chaining Solution: Place colliding items in linked list, 

            then scan to search 
•  Simple Uniform Hashing Assumption (SUHA):  

   h is “random”, uniform on buckets 
–  Hashing n items into m buckets à expected “load” per bucket: n/m 
–  If chaining used, expected search time O(1 + n/m) 



U :	  universe of all possible keys-huge set 
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h(k2)	  =	  h(k4)	  

:	  actual keys-small set, but not known when 
designing data structure 
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Hash Table with Chaining 



Hash Functions? 

•  Division hash 
– h(k) = k mod m 
– Fast if m is a power of 2, slow otherwise 
– Bad if e.g. keys are regular 

•  Multiplication hash 
– a an odd integer  
– h(k) = (a·k mod 2w) >> w-r  
– Better on regular sets of keys 

k (key) 
w bits 

keep 
this 

r bits 

a (multiplier) x



Non-numbers? 

•  What if we want to hash e.g. strings? 
•  Any data is bits, and bits are a number 
•  E.g., strings: 
– Letters a..z can be “digits” base 26. 
– “the” = t·(26)2 + h·(26) + e 
            = 19·(676) + 8·(26) + 5 
            = 334157 

•  Note: hash time is length of string, not O(1) 
(wait a few slides) 



Longest Common Substring 

•  Strings S,T of length n, want to find longest 
common substring 

•  Algorithms from last time:  
    O(n4) → O(n3logn) → O(n2logn) 

•  Winner algorithm used a hash table of size n: 
 Binary search on maximum match length L; to 
check if a length works: 
–  Insert all length-L substrings of S in hash table 
– For each length-L substring x of T 

•  Look in bucket h(x) to see if x is in S 



Runtime Analysis 
•  Binary search cost: O(log n) length values L tested 
•  For each length value L, here are the costly operations: 

–  Inserting all L-length substrings of S:   n-L hashes 
•  Each hash takes L time, so total work Θ((n-L)L)=Ο(n2)  

–  Hashing all L-length substrings of T:    n-L hashes 
•  another Ο(n2)  

–  Time for comparing substrings of T to substrings of S: 
•  How many comparisons?  
•  Under SUHA, each substring of T is compared to an expected O(1) of 

substrings of S found in its bucket 
•  Each comparison takes O(L) 
•  Hence, time for all comparisons: Θ(nL)=Ο(n2)  

•  So Ο(n2) work for each length 
•  Hence Ο(n2 log n) including binary search 



Faster? 

•  Amdahl’s law: if one part of the code takes 
20% of the time, then no matter how much you 
improve it, you only get 20% speedup 

•  Corollary: must improve all asymptotically 
worst parts to change asymptotic runtime 

•  In our case 
– Must compute sequence of n hashes faster 
– Must reduce cost of comparing in bucket 



FASTER COMPARISON 



Faster Comparison 
•  First Idea: when we find a match for some length, we 

can stop and go to the next value of length in our binary 
search. 

•  But, the real problem is “false positives” 
–  Strings in same bucket that don’t match, but we waste time on 

•  Analysis: 
–  n substrings to size-n table: average load 1 
–  SUHA: for every substring x of T, there is 1 other string in x’s 

bucket (in expectation) 
– Comparison work: L per string (in expectation) 
–  So total work for all strings of T: nL = Ο(n2) 



Solution: Bigger table! 
•  What size? 
•  Table size m = n2 

–  n substrings to size-m table: average load 1/n 
–  SUHA: for every substring x of T, there is 1/n other 

strings in x’s bucket (in expectation) 
– Comparison work: L/n per string (in expectation) 
–  So total work for all strings of T: n(L/n) = L = O(n) 

•  Downside? 
– Bigger table 
–  (n2 isn’t realistic for large n) 



Signatures 

•  Note n2 table isn’t needed for fast lookup 
– Size n enough for that 
– n2 is to reduce cost of false positive compares 

•  So don’t bother making the n2 table 
– Just compute for each string another hash value in 

the larger range 1..n2 

– Called a signature 
–  If two signatures differ, strings differ 
– Pr[same sig for two different strings] = 1/n2 

•  (simple uniform hashing) 



Application 

•  Hash substrings to size n table 
•  But store a signature with each substring 
– Using a second hash function to [1..n2] 

•  Check each T-string against its bucket 
– First check signature, if match then compare strings 
– Signature is a small number, so comparing them is O(1) 

strictly	  speaking	  O(logn);	  but	  if	  n2<232	  the	  
signature	  fits	  inside	  a	  word	  of	  the	  computer;	  
in	  this	  case,	  the	  comparison	  takes	  O(1)	  



Application 
•  Runtime Analysis: 
–  for each T-string: 

      O(bucket size)=O(1) work to compare signatures;  
– so overall O(n) time in signature comparisons 
– Time spent in string comparisons? 

 L x (Expected Total Number of False-Signature Collisions) 
- n out of the n2 values in [1..n2] are used by S-strings 
- so probability of a T-string signature-colliding with 

some S-string: n/n2 

- hence total expected number of collisions 1 
so total time spent in String Comparisons is L 

fine	  print:	  we	  didn’t	  take	  into	  account	  the	  Dme	  needed	  to	  compute	  
signatures;	  we	  can	  compute	  all	  signatures	  in	  O(n)	  Dme	  using	  trick	  
described	  next…	  



FASTER HASHING 



Rolling Hash 

•  We make a sequence of n substring hashes 
– Substring lengths L 
– Total time O(nL) = O(n2) 

•  Can we do better? 
– For our particular application, yes! 

Verba	  volant,	  scripta	  
manent	  

length n 

length L 



Rolling Hash Idea 
•  e.g. hash all 3-substrings of “there” 
•  Recall division hash: x mod m 
•  Recall string to number: 
–  First substring “the” = t·(26)2 + h·(26) + e  

•  If we have “the”, can we compute “her”? 

•  i.e. subtract first letter’s contribution to number, shift, and 
add last letter 

	  “her” 	  =	  h·∙(26)2+	  e·∙(26)	  +	  r	  

	   	   	  	  	  	  	  	  	  	   	  =	  26	  ·∙	  (	  h·∙(26)	  +	  e	  )	  +	  r	  
	   	   	  =	  26	  ·∙	  (t·∙(26)2	  +	  h·∙(26)	  +	  e	  -‐	  t·∙(26)2	  )	  +	  r	  

	  =	  26	  ·∙	  (	  “the”	  -‐	  t·∙(26)2	  )	  +	  r	  



General rule 
•  Strings = base-b numbers 
•  Current substring S[i … i+L-1] 

   S[i] · bL-1   +  S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1] 
- S[i] · bL-1 

                         S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1]  
× b 
   S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b 
+                                                                          S[i+L] 
   S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b + S[i+L] 
=S[i+1 … i+L] 



Mod Magic 1 
•  So: S[i+1 … i+L] = b S[i … i+L-1]- bL S[i] + S[i+L]  
•  where 

  S[i … i+L-1] = S[i] · bL-1 + S[i+1] · bL-2 + … + S[i+L-1] (*) 
•  But S[i … i+L-1] may be a huge number (so huge that we may 

not even be able to store in the computer, e.g. L=50, b=26) 
•  Solution only keep its division hash:  S[…] mod m 
•  This can be computed without computing S[…], using mod 

magic! 
•  Recall: (ab)	  mod	  m	  =	  (a	  mod	  m)	  (b	  mod	  m)	  (mod	  m)	  

(a+b)	  mod	  m	  =	  (a	  mod	  m)	  +	  (b	  mod	  m)	  (mod	  m)	  

•  With a clever parenthesization of (*): O(L) to hash string! 



Mod Magic 2 

•  Recall: S[i+1 … i+L] = b S[i … i+L-1]- bL S[i] + S[i+L]  
•  Say we have hash of S[i … i+L-1], can we still compute 

hash of S[i+1 … i+L] ? 
•  Still mod magic to the rescue! 
•  Job done in O(1) operations, if we know bL mod m 

Computing n-L hashes costs O(n) 
O(L) time for the first hash 
+O(L) to compute bL	  mod	  m 
+ O(1) for each additional hash 



Summary 

•  Reduced compare cost to O(n)/length 
– By using a big hash table 
– Or signatures in a small table 

•  Reduced hash computation to O(n)/length 
– Rolling hash function 

•  Total cost of phases: O(n log n) 

•  Not the end: suffix tree achieves O(n) 


