
6.006- Introduction to
Algorithms

Lecture 6
Alan Deckelbaum

CLRS: Chapter 17 and 32.2.

LAST TIME…

Dictionaries, Hash Tables
•  Dictionary: Insert, Delete, Find a key

–  can associate a whole item with each key
•  Hash table

–  implements a dictionary, by spreading items over an array
–  uses hash function

h: Universe of keys (huge) à Buckets (small)

–  Collisions: Multiple items may fall in same bucket
–  Chaining Solution: Place colliding items in linked list,

 then scan to search
•  Simple Uniform Hashing Assumption (SUHA):

 h is “random”, uniform on buckets
–  Hashing n items into m buckets à expected “load” per bucket: n/m
–  If chaining used, expected search time O(1 + n/m)

U :	 universe of all possible keys-huge set

h(k1)	

h(k3)	

h(k2)	 =	 h(k4)	

:	 actual keys-small set, but not known when
designing data structure

K	

item3	

item1	

item2	 item4	

K

U

Hash Table with Chaining

Hash Functions?

•  Division hash
– h(k) = k mod m
– Fast if m is a power of 2, slow otherwise
– Bad if e.g. keys are regular

•  Multiplication hash
– a an odd integer
– h(k) = (a·k mod 2w) >> w-r
– Better on regular sets of keys

k (key)
w bits

keep
this

r bits

a (multiplier) x

Non-numbers?

•  What if we want to hash e.g. strings?
•  Any data is bits, and bits are a number
•  E.g., strings:
– Letters a..z can be “digits” base 26.
– “the” = t·(26)2 + h·(26) + e
 = 19·(676) + 8·(26) + 5
 = 334157

•  Note: hash time is length of string, not O(1)
(wait a few slides)

Longest Common Substring

•  Strings S,T of length n, want to find longest
common substring

•  Algorithms from last time:
 O(n4) → O(n3logn) → O(n2logn)

•  Winner algorithm used a hash table of size n:
 Binary search on maximum match length L; to
check if a length works:
–  Insert all length-L substrings of S in hash table
– For each length-L substring x of T

•  Look in bucket h(x) to see if x is in S

Runtime Analysis
•  Binary search cost: O(log n) length values L tested
•  For each length value L, here are the costly operations:

–  Inserting all L-length substrings of S: n-L hashes
•  Each hash takes L time, so total work Θ((n-L)L)=Ο(n2)

–  Hashing all L-length substrings of T: n-L hashes
•  another Ο(n2)

–  Time for comparing substrings of T to substrings of S:
•  How many comparisons?
•  Under SUHA, each substring of T is compared to an expected O(1) of

substrings of S found in its bucket
•  Each comparison takes O(L)
•  Hence, time for all comparisons: Θ(nL)=Ο(n2)

•  So Ο(n2) work for each length
•  Hence Ο(n2 log n) including binary search

Faster?

•  Amdahl’s law: if one part of the code takes
20% of the time, then no matter how much you
improve it, you only get 20% speedup

•  Corollary: must improve all asymptotically
worst parts to change asymptotic runtime

•  In our case
– Must compute sequence of n hashes faster
– Must reduce cost of comparing in bucket

FASTER COMPARISON

Faster Comparison
•  First Idea: when we find a match for some length, we

can stop and go to the next value of length in our binary
search.

•  But, the real problem is “false positives”
–  Strings in same bucket that don’t match, but we waste time on

•  Analysis:
–  n substrings to size-n table: average load 1
–  SUHA: for every substring x of T, there is 1 other string in x’s

bucket (in expectation)
– Comparison work: L per string (in expectation)
–  So total work for all strings of T: nL = Ο(n2)

Solution: Bigger table!
•  What size?
•  Table size m = n2

–  n substrings to size-m table: average load 1/n
–  SUHA: for every substring x of T, there is 1/n other

strings in x’s bucket (in expectation)
– Comparison work: L/n per string (in expectation)
–  So total work for all strings of T: n(L/n) = L = O(n)

•  Downside?
– Bigger table
–  (n2 isn’t realistic for large n)

Signatures

•  Note n2 table isn’t needed for fast lookup
– Size n enough for that
– n2 is to reduce cost of false positive compares

•  So don’t bother making the n2 table
– Just compute for each string another hash value in

the larger range 1..n2

– Called a signature
–  If two signatures differ, strings differ
– Pr[same sig for two different strings] = 1/n2

•  (simple uniform hashing)

Application

•  Hash substrings to size n table
•  But store a signature with each substring
– Using a second hash function to [1..n2]

•  Check each T-string against its bucket
– First check signature, if match then compare strings
– Signature is a small number, so comparing them is O(1)

strictly	 speaking	 O(logn);	 but	 if	 n2<232	 the	
signature	 fits	 inside	 a	 word	 of	 the	 computer;	
in	 this	 case,	 the	 comparison	 takes	 O(1)	

Application
•  Runtime Analysis:
–  for each T-string:

 O(bucket size)=O(1) work to compare signatures;
– so overall O(n) time in signature comparisons
– Time spent in string comparisons?

 L x (Expected Total Number of False-Signature Collisions)
- n out of the n2 values in [1..n2] are used by S-strings
- so probability of a T-string signature-colliding with

some S-string: n/n2

- hence total expected number of collisions 1
so total time spent in String Comparisons is L

fine	 print:	 we	 didn’t	 take	 into	 account	 the	 Dme	 needed	 to	 compute	
signatures;	 we	 can	 compute	 all	 signatures	 in	 O(n)	 Dme	 using	 trick	
described	 next…	

FASTER HASHING

Rolling Hash

•  We make a sequence of n substring hashes
– Substring lengths L
– Total time O(nL) = O(n2)

•  Can we do better?
– For our particular application, yes!

Verba	 volant,	 scripta	
manent	

length n

length L

Rolling Hash Idea
•  e.g. hash all 3-substrings of “there”
•  Recall division hash: x mod m
•  Recall string to number:
–  First substring “the” = t·(26)2 + h·(26) + e

•  If we have “the”, can we compute “her”?

•  i.e. subtract first letter’s contribution to number, shift, and
add last letter

	 “her” 	 =	 h·∙(26)2+	 e·∙(26)	 +	 r	

	 	 	 	 	 	 	 	 	 	 	 =	 26	 ·∙	 (h·∙(26)	 +	 e)	 +	 r	
	 	 	 =	 26	 ·∙	 (t·∙(26)2	 +	 h·∙(26)	 +	 e	 -‐	 t·∙(26)2)	 +	 r	

	 =	 26	 ·∙	 (“the”	 -‐	 t·∙(26)2)	 +	 r	

General rule
•  Strings = base-b numbers
•  Current substring S[i … i+L-1]

 S[i] · bL-1 + S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1]
- S[i] · bL-1

 S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1]
× b
 S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b
+ S[i+L]
 S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b + S[i+L]
=S[i+1 … i+L]

Mod Magic 1
•  So: S[i+1 … i+L] = b S[i … i+L-1]- bL S[i] + S[i+L]
•  where

 S[i … i+L-1] = S[i] · bL-1 + S[i+1] · bL-2 + … + S[i+L-1] (*)
•  But S[i … i+L-1] may be a huge number (so huge that we may

not even be able to store in the computer, e.g. L=50, b=26)
•  Solution only keep its division hash: S[…] mod m
•  This can be computed without computing S[…], using mod

magic!
•  Recall: (ab)	 mod	 m	 =	 (a	 mod	 m)	 (b	 mod	 m)	 (mod	 m)	

(a+b)	 mod	 m	 =	 (a	 mod	 m)	 +	 (b	 mod	 m)	 (mod	 m)	

•  With a clever parenthesization of (*): O(L) to hash string!

Mod Magic 2

•  Recall: S[i+1 … i+L] = b S[i … i+L-1]- bL S[i] + S[i+L]
•  Say we have hash of S[i … i+L-1], can we still compute

hash of S[i+1 … i+L] ?
•  Still mod magic to the rescue!
•  Job done in O(1) operations, if we know bL mod m

Computing n-L hashes costs O(n)
O(L) time for the first hash
+O(L) to compute bL	 mod	 m
+ O(1) for each additional hash

Summary

•  Reduced compare cost to O(n)/length
– By using a big hash table
– Or signatures in a small table

•  Reduced hash computation to O(n)/length
– Rolling hash function

•  Total cost of phases: O(n log n)

•  Not the end: suffix tree achieves O(n)

