
6.006- Introduction to
Algorithms

Lecture 5
Prof. Silvio Micali

DNA matching

Given two strings S and T over same finite alphabet
Find largest substring that appears in both

If S=algorithm and T=arithmetic
Then return “rithm”: algorithm arithmetic

•  Also useful in plagiarism detection

•  Say strings S and T of length n

Naïve Algorithm

•  For L = n downto 1
•  for all length-L substrings X1 of S
•  for all length-L substrings X2 of T
•  if X1=X2, return X1

Runtime analysis
– n candidate lengths L
– n substrings of that length in each of S and T
– L time to compare the strings
– Total runtime: Ω(n4)

+ Bynary search

•  Start with L=n/2
•  for all length L substrings X1 of S
•  for all length L substrings X2 of T
•  if X1=X2 (i.e., if success),

 then “try larger L”
 if failed, “try smaller L”

Runtime analysis
 Ω(n3 log n) Better than Ω(n4)!

Via (Balanced) BSTs

Complexity?	

0	

1
2

X

X’

X’’

YES	

YES	

YES	

BSTs Array indexed by substrings

Wait1!	

Substrings	
 are	
 no	
 numbers!	

Everything	
 is	
 a	

number	
 !	

OK, OK
For every possible length L=n,…,1

Insert all length L substrings of S into table

For each length L substring of T, check if in table

Overall Complexity: Ο(n3)

With binary search on length, total is Ο(n2 log n)
 Next time: Ο(n log n)

O(nL)	

O(nL)	

n	

Generalizing: Dictionaries

•  A set containing items; each item has a key
•  what keys and items are is quite flexible
•  Supported Operations:
– Insert(item): add given item to set
– Delete(item): delete given item to set
– Search(key): return the item corresponding to the

given key, if such an item exists

Other Examples
•  Spelling correction
– Key is a misspelled word, item is the correct spelling

•  Python Interpreter
– Executing program, see a variable name (key)
– Need to look up its current assignment (item)

•  …

Let me see if I understood…
(1) Dictionaries are everywhere
(2) Anything in the computer is a sequence of bits
(3) Dictionaries can be implemented by tables

•  Example: English words
–  26 letters in alphabet

 ⇒ can represent each with 5 bits
– Antidisestablishmentarianism has 28 letters
–  28*5 = 140 bits
–  So, use array of size 2140

•  Isn’t this too much space for 100,000 words?

Hash Functions

• 

:	
 actual keys; small set but not
known in advance

K	

K	

U :	
 universe of all possible keys;
huge set

U k1	

k2	

k4	

k3	

Ø	

1	

m-­‐1	

U

h(k1)	
 item1	

h(k3)	
 item3	

item2	
 h(k2)	

(i) insert item1
 with key k1	
 	

(ii) item2
 with k2	

(iii) item3
 with k3	
 	

k1	

k2	
 k3	

k4	

problem	

h(k1)	

h(k3)	

h(k2)	
 =	
 h(k4)	

(collision)	

Ø	

1	

m-­‐1	

U

item1	

item3	

(iii) item3
 with k3	
 	

k1	

k2	
 k3	

k4	

(i) insert item1
 with key k1	
 	

(ii) item2
 with k2	

Collisions

•  What went/can go wrong?
– Distinct keys x and y
– But h(x) = h(y)
– Called a collision

•  This is unavoidable: if table smaller than
range, some keys must collide…
– Pigeonhole principle

•  What do you put in the bucket?

Coping with collisions

•  Idea1: Change to a new “uncolliding” hash
function
– Hard to find, and takes time

•  Idea2: Chaining
– Put both items in same bucket (this lecture)

•  Idea3: Open addressing
– Find a different, empty bucket for y (next lecture)

U :	
 universe of all possible keys

h(k1)	

h(k3)	

h(k2)	
 =	
 h(k4)	

:	
 actual keys, not known in advance K	

item3	

item1	

item2	
 item4	

K

U

Chaining
- Each bucket, linked
list of contained items

-  Space used is
space of table
plus one unit per item
(size of key and item)

Problem Solved?

•  To find key, must scan whole list in key’s bucket
•  Length L list costs L key comparisons
•  If all keys hash to same bucket, lookup cost Θ(n)

Let’s Be Optimistic !

•  Assume keys are equally likely to land in
every bucket, independently of where other
keys land

•  Call this
 the “Simple Uniform Hashing” assumption
–  (why/when can we make this assumption?)

Average Case Analysis under SUHA

•  n items in table of m buckets
•  Average number of items/bucket is α=n/m
•  So expected time to find some key x is 1+α
•  O(1) if α=O(1), i.e. m=Ω(n)

Reality
• 

Division Hash Function

•  h(k) = k mod m
•  k1 and k2 collide when k1=k2 (mod m)
– Unlikely if keys are random

•  e.g. if m is a power of 2, just take low order
bits of key
– Very fast (a mask)
– And people care about very fast in hashing

Problems

•  Regularity
– Suppose keys are x, 2x, 3x, 4x, ….
– Suppose x and chosen m have common divisor d
– Then (m/d)x is a multiple of m

•  so i·x = (i+m/d)x mod m
– Only use 1/d fraction of table

•  E.g, m power of 2 and all keys are even

•  So make m a prime number
– But finding a prime number is hard
– And now you have to divide (slow)

Multiplication Hash Function
•  Suppose we’re aiming for table size 2r

•  and keys are w bits long, where w>r is the machine word
•  Multiply k with some a (fixed for the hash function)
•  then keep certain bits of the result as follows

key
w bits

keep this r bits

a (our choice) x	

Python Implementation

•  Python objects have a hash method
– Number, string, tuple, any object implementing

__hash__
•  Maps object to (arbitarily large) integer
– So really, should be called prehash

•  Take mod m to put in a size-m hash table
•  Peculiar details
–  Integers map to themselves
– Strings that differ by one letter don’t collide

Conclusion

•  Dictionaries are pervasive
•  Hash tables implement them efficiently
– Under an optimistic assumption of random keys
– Can be “made true” by choice of hash function

•  How did we beat BSTs?
– Used indexing
– Sacrificed operations: previous, successor

•  Next time: open addressing

Thank you!

Multiplication Hash Function

•  The formula:

 h(k) = [(a * k) mod 2w] >> (w - r)
– Multiply by a
– When overflow machine word, wrap
– Take high r bits of resulting machine word
–  (Assumes table size smaller than machine word)

Bit	
 shiF	

Good practice: Make a an odd integer (why?) > 2w-1
Benefit: Multiplying and bit shifts faster than division

Today’s Topic

“Optimist pays off!”

a.k.a.	
 The	
 ubiquity	
 and	
 usefulness	

of	
 dic$onaries	

Implementation

•  Often not fast enough for these applications!

•  use BSTs!

•  Can we beat BSTs?

if only we could do all operations in O(1)…

•  can keep keys in a BST, keeping a pointer from
each key to its value

•  O(log n) time per operation

[A parenthesis: DNA Matching

BSTs?

•  For L=n downto 1
•  Insert all length-L substrings of T into AVL tree
•  For all length-L substring X2 of T,

 Try finding X2 in the tree
 if failed, try smaller L

•  Runtime analysis

