6.006- Introduction to Algorithms

Lecture 4
Prof. Silvio Micali

Lecture Overview

* Review: Binary Search Trees

* Importance of being balanced

 Balanced BSTs 0

— AVL trees e @
— Other balanced trees
O (© ®@

Binary Search Trees (BSTSs)

» FEach node x has: root
— key[x] \
— Pointers: left[x], right[x], p[Xx] @
* Property: for any node x: ° @
— For all nodes y 1n the left subtree of x:
key[y] < key[x] O &
— For all nodes y in the right subtree of x: ©
keyly] = key[x] leaff

height = 3

BST Basic Operations

Find, successor, min, ...

Remove an element (e.g., 37)
Insert new element (e.g., 53)
Delete & insert: O(h),
where h is the height of the tree
Useful to “augment” a BST (e.g., w/ tree size)

The importance of being balanced

for n nodes:

N
PO

Perfectly Balanced Path

h = 0®(og n) h = 0O(n)

Balanced BST Strategy

Augment every node with useful INFO

Define a local invariant on INFO

Show that invariant guarantees ®(log n) height
Design algorithms to maintain INFO & invariant

AVL Trees: Definition

[Adelson-Velskil and Landis’62]

» INFO: for every node, store its
height (“augmentation”)

— Leaves have height 0
— NIL has “height” -1

* Invariant: for every node x, the
heights of its left child and right

child differ by at most 1
k <+1

AVL trees have height &(log n)

* Let n,be the minimum
number of nodes of an AVL
tree of height h

 We haven, > 1+n, ,+n,,
=Ny, > 20y,
=, > 2"
= h<2Ign,

h-1

e Optimal?

h-2

Rotations

e RIGHT-ROTATE(B) °
a I:EFT—ROTATE(A) A e
a\ /P SRR

Rotations maintain the inorder ordering of keys:
Yac o VbEpP VceEy: a<A=<b=sB=c.

% I;EFT-ROTATE(I) @@@

Insertions

* Insert new node u as in the
simple BST

— Can create imbalance

* Work your way up the tree,
restoring the balance

h+1

h-2

Balancing

* Let x be the lowest “violating”
node

« WLOG x 1s “right-heavy’:
Right[x] deeper Left[x]
» 3 Cases (others are symmetric):

°Q °Q °Q
A LA L8)

1. y right-heavy 2.y balanced 3.y left-heavy

k-1 k+1

Case 1: y is right-heavy

Case 2: y is balanced

(Same as Case 1)

Case 3: y is left-heavy

Need to do more ...

Case 3: y is left-heavy

& z 1s left-heavy & z 1s right-heavy
OR ...

Case 3: y is left-heavy

RIGHT-ROTATE (y)
LEFT-ROTATE(X)

And we are done!

Complexity

Insertion:
Local rebalancing:

How many local rebalancings after one insertion?

Recall Case 1: y is right-heavy

Examples of insert/balancing

Insert(23) X = 29: left-left case

(4D

@ ®
D) @

=

Balanced Search Trees ...

AVL trees (Adelson-Velsii and Landis 1962)
Red-black trees (see CLRS 13)
Splay trees (Sleator and Tarjan 1985)

Scapegoat trees (Galperin and Rivest 1993)
Treaps (Seidel and Aragon 1996)

US capitol

e e« W S—

b@h"uuk ;

s PR *_ ’

Mississipp1 Arkansas

Who invented the Multiplication Algorithm?

