
6.006- Introduction to
Algorithms

Lecture 2
Prof. Silvio Micali

Menu

Problem: peak finding
1 dimension
2 dimensions

Technique: Divide and conquer

Peak Finding: 1D

Consider an array A[1…n] :

Element A[i] is a peak if not smaller than its neighbor(s).

10 13 5 8 3 2 1 15

if i ≠ 1, n : A[i]≥A[i-1] and A[i]≥A[i+1]
If i=1 : A[1] ≥ A[2]
If i=n : A[n] ≥ A[n-1]

Problem: find any peak.

Peak-Finding Ideas ?

Algorithm I:
Scan the array from left to right
Compare each A[i] with its neighbors
Exit when found a peak

Complexity:
Might need to scan all elements, so T(n)=Θ(n)

Next Idea

Algorithm II:
Compare middle element with neighbors

If A[n/2-1]>A[n/2]
 then search for a peak among A[1]… A[n/2-1]
Else, if A[n/2]<A[n/2+1]
 then search for a peak among A[n/2]… A[n]
Else A[n/2] is a peak!

 Running time ?

>
?

<
?

Algorithm II: Complexity

Algorithm II: Complexity

•  We have

•  Unraveling the recursion,
 T(n)= Θ(1) + Θ(1) +…+ Θ(1) = Θ(log n)

•  log n is much much better than n !

Recursion
Time for comparing A
[n/2] with neighbors

log2 n

T(n) = T(n/2) + Θ(1)

Time needed to find
peak in array of length n

Divide and Conquer

•  Very powerful design tool:
– Divide input into multiple disjoint parts
– Conquer each of the parts separately

 (using recursive call)

•  Occasionally, we need to combine results
from different calls (not used here)

Consider a 2D array A[1…n, 1…m] :

A[i] is a 2D peak if not smaller than its (at most 4) neighbors.

Problem: find any 2D peak.

Peak Finding: 2D

10 8 5
3 2 1
7 13
6 8

4
3

2D-Peak-Finding Ideas?

Algorithm 0:
For each row, until you find a peak:

 1. find a row-peak
 2. compare it with North- and South-neighbors
 3. If ≥, then done

?

Algorithm I:
recycle better 1D algorithm

12 8 5
11 3
10 9

6
2

8 4 1

12 9 6

For each column j, find its global maximum B[j]

Apply 1D peak finder to find a peak (say B[j]) of B[1...m]

Correctness: …

Complexity: Θ(n⋅m)

Recycling is an art…
“Map it
back”

Return
it!

Algorithm I’: use the 1D algorithm

•  Recall: 1D peak finder uses only
O(log m) entries of B

•  Modify Algorithm I so that it only
computes B[j] when needed !

•  Total time ?
 …only O(n log m) !

– Need O(log m) entries B[j]
– Each computed in O(n) time

12 8 5
11 3
10 9

6
2

8 4 1

12 9 6

Algorithm II

•  Pick middle column (j=m/2)
•  Find global maximum a=A[i,m/2] in that column
 (and quit if m=1)
•  Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
•  If b>a
 then recurse on left columns
•  Else, if c>a
 then recurse on right columns
•  Else a is a 2D peak!

a b c

Algorithm II: Example

12 8 5
11 3
10 9

6
2

8 4 1
9

12

a c b

•  Pick middle column (j=m/2)
•  Find global maximum a=A[i,m/2] in that column
 (and quit if m=1)
•  Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
•  If b>a
 then recurse on left columns
•  Else, if c>a
 then recurse on right columns
•  Else a is a 2D peak!

Algorithm II: Correctness
Claim: If b>a, then there is a peak among the

 left columns
Proof (by contradiction):

Assume no peak on the left
Then b must have a neighbor b1 with
higher value
And b1 must have a neighbor b2 with
higher value
…
We have to stay on the left side – why?
(because we cannot enter the middle
column)
But at some point, we would run out the
elements of the left columns
Hence, we have to find a peak at some
point.

Question: Does the above claim suffice for the
proof of correctness of the algorithm?

12 8 5
11 3
10 9

6
2

8 4 1
9 a b

b1
b2

Algorithm II: Complexity

•  We have
T(n,m)= T(n,m/2) + Θ(n)

•  Hence:

•  T(n,n)= Θ(n) + Θ(n) +…+ Θ(n)

Recursion

Scanning middle column

log2 m

= Θ(nlog m)

Faster than O(n log n) ?
•  Idea:

•  Pictorially:

read only O(n +m) elements

Reading only O(n + m) elements, reduce an array of
 candidates to an array of candidates n/2×m/2n×m

Faster than O(n log n) ?

•  Hypothetical algorithm has recursion:

•  Hence:

= Θ(n + m) !

T (n, m) = T
�n

2
,
m

2

�
+ Θ(n + m)

T (n, m) = Θ(n + m) + Θ
�

n + m

2

�

+Θ
�

n + m

4

�

+ . . . + Θ(1)

Towards a linear-time algorithm
What elements are useful to check?

- suppose we find global
max on the cross

Towards a linear-time algorithm
What elements are useful to check?

- suppose we find global
max on the cross
- if middle element done!

Towards a linear-time algorithm
What elements are useful to check?

- find global max on the
cross
- if middle element done!

- o.w. two candidate sub-
squares

- determine which one to
pick by looking at its
neighbors not on the cross
(as in Algorithm II)

?

?

Claim: The sub-square chosen by the above procedure (if any), always
contains a peak of the large square.

OK, what else is needed for an O(n+m) algorithm?
Hmmm…

First Problem Set
Out Today !

•  Refer to class website for further information!

•  Good Luck!

•  I.e., GOOD WORK!

