6.006- Introduction to
Algorlthms

Lecture 2
Prof. Silvio Micali

Menu

Problem: peak finding
1 dimension

2 dimensions

Technique: Divide and conquer

Peak Finding: 1D

Consider an array 13[1 .. il] ; :

I5P13)5 181321

Element A[1] is a peak if not smaller than its neighbor(s).

if1#1,n:A[1]>A[1-1] and A[1]>A[1+1]
If1=1: A[l]>A[2]
If 1i=n: A[n] >A[n-1]

Problem: find any peak.

Peak-Finding Ideas ?

Algorithm I:
Scan the array from left to right
Compare each A[1] with 1ts neighbors
Exit when found a peak
Complexity:
Might need to scan all elements, so T(n)=0(n)

Next Idea

Algorithm II: e \: S
Compare middle element with neighbors
If A[n/2-11>A[n/2]
then search for a peak among A[1]... A[n/2-1]
Else, if A[n/2|<A[n/2+1]
then search for a peak among A[n/2]... A[n]
Else A[n/2] 1s a peak!

Running time ?

Algorithm II: Complexity

Algorithm II: Complexity

Time needed to find
peak in array of length n

Time for comparing A
e We have / Recursion [n/2] with neighbors

T(n) =Tn/2) + O(1)

e Unraveling the recursion,
T(n)= @(1) +0O(1) +...+ @(9 = ©(log n)

log, n

* logn 1s much much better thann !

Divide and Conquer

* Very powerful design tool:
— Divide 1nput into multiple disjoint parts

— Conguer each of the parts separately
(using recursive call)

* QOccasionally, we need to combine results
from different calls (not used here)

Consider a 2D array A[1...n, 1..

Peak Finding: 2D

.m]j :
10| 8 | 5
312 |1
7 113] 4
6 | 8 | 3

Problem: find any 2D peak.

Al1] 1s a 2D peak 1f not smaller than 1ts (at most 4) neighbors.

2D-Peak-Finding Ideas?

[2 J
&
Algorithm 0:

For each row, until you find a peak:
1. find a row-peak
2. compare 1t with North- and South-neighbors
3. If =, then done

(?

Algorithm I:

recycle better 1D algorithm

For each column j, find its global/ maximum B[]]

Apply 1D peak finder to find a peak (say B[j]) of B[1...m]

Correctness: ...

Complexity: O(n'm) Moo i
ap 1

Recycling is an art. .. back

Reiil!lm I,

[s

11

10

3

O 1 -~ | \O | W

@)\ — DN | O\ | DN

Algorithm I’: use the 1D algorithm

* Recall: 1D peak finder uses only

O(log m) entries of B 2|8 |5
» Modify Algorithm I so that it only 11316

computes B[j] when needed ! ol o | 2
o e 9

Total time * g | 4|1

...only O(n log m) !

— Need O(log m) entries B[j] 121 9|1 6

— Each computed in O(n) time

Algorithm 11

Pick middle column (j=m/2)

Find global maximum a=A[1,m/2] in that column
(and quit if m=1)

Compare a to b=A[1,m/2-1] and c=A[1,m/2+1]

If b>a

then recurse on left columns

Else, if c>a

then recurse on right columns

Else a 1s a 2D peak!

Algorithm 11: Example

Pick middle column (j=m/2)

Find global maximum a=A[i,m/2] in that column

(and quit if m=1)
Compare a to b=A[1,m/2-1] and c=A[1,m/2+1]

If b>a

then recurse on left columns
Else, if c>a

then recurse on right columns
Else a 1s a 2D peak!

Algorithm II: Correctness

Claim: If b>a, then there 1s a peak among the
left columns

Proof (by contradiction):
Assume no peak on the left

Then b must have a neighbor b1 with
higher value

And bl must have a neighbor b2 with

higher value

We have to stay on the left side — why?

(because we cannot enter the middle
column)

But at some point, we would run out the
elements of the left columns

Hence, we have to find a peak at some
point.

Question: Does the above claim suffice for the
proof of correctness of the algorithm?

Algorithm II: Complexity

Recursion
 We have /
T(n,m)= T(n,m/2) + O(n)
AN
Scanning middle column
* Hence:
* T(n,n)=0O(n)+ B(n) +...+ O(n) = BO(nlog m)
N\ J

Y

log, m

Faster than O(n log n) ?

e Idea:

Reading only O(n + m) elements, reduce an array of
n X m candidates to an array of n/2 x m/2 candidates

* Pictorally:

AN

read only O(n +m) elements

Faster than O(n log n) ?

* Hypothetical algorithm has recursion:

n m

T(n,m)="T (5, 5) + ©(n + m)

* Hence: T'(n,m)=06n+m)+ 06 (n;m)

Lo (an)
+ ... 4+ 0(1)
=0On+m) !

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross

- 1f middle element done!

Towards a linear-time algorithm

What elements are useful to check?

- find global max on the
Cross

?

- 1f middle element done!

- 0.w. two candidate sub-
squares

- determine which one to
? pick by looking at its
neighbors not on the cross
(as in Algorithm II)

Claim: The sub-square chosen by the above procedure (if any), always
contains a peak of the large square.

OK, what else is needed for an O(n+m) algorithm?
Hmmm...

First Problem Set
Out Today !

 Refer to class website for further information!

 Good Luck!

* le., GOOD WORK!

