
6.006-Introduction to Algorithms

Lecture 1
Prof. Costis Daskalakis

Today’s Menu
•  Motivation
•  Course Overview
•  Administrivia
•  Linked Lists and Document Distance
•  Intro to “Peak Finding”

“Al-go-rithms”: what?

•  Nothing to do with Log-arithms J
•  Def: A well-specified method for solving a

problem using a finite sequence of instructions.
•  Description might be English, Pseudocode, or

real code
•  Key: no ambiguity

Al-Khwārizmī (780-850)

Efficient Algorithms: Why?
•  Solving problems consumes resources that are

often limited/valuable:
 – Time: Plan a flight path
 – Space: Process stream of astronomical data
 – Energy: Save money

• Bigger problems consume more resources
• Need algorithms that “scale” to large inputs, e.g.

searching the web…
•  Market value: 6.006 is useful in all kinds of job

interviews ;-)

Efficient Algorithms: How?
•  Define problem:
– Unambiguous description of desired result

•  Abstract irrelevant detail
–  “Assume the cow is a sphere”

•  Pull techniques from the “algorithmic toolbox”
–  [CLRS] class textbook

•  Implement and evaluate performance
– Revise problem/abstraction

•  Generalize
– Algorithm to apply to broad class of problems

Class Content
•  8 modules with motivating problem/pset
•  Linked Data Structures: Document Distance/

Flight Planning
•  Divide & Conquer: Peak Finding
•  Hashing: Efficient File Update/Synchronization
•  Sorting
•  Graph Search: Rubik’s Cube
•  Shortest Paths: Google Maps
•  Dynamic Programming: print justification
•  Wildcard: numerical/NP-hardness/crypto

Administrivia
•  Course information: class website
•  Profs: Costis Daskalakis, Silvio Micali
•  TAs: Deckelbaum, Ionescu, Kishore, Oliveira, Wu
•  Sign-up to the homework submission website:

https://alg.csail.mit.edu (same as https://sec.csail.mit.edu/)
•  Piazza: online discussion
• Prereqs: 6.01, 6.042 (if you don’t have them, talk to us)
• Python
• Grading: Problem sets (30%)

 Quiz1 (March 14 (?): 7.30-9.30pm; 20%)
 Quiz2(April 18 (?): 7.30-9.30pm; 20%)
 Exam (30%)

• Read collaboration policy!

Document Distance
•  Given 2 documents, how similar are they?
–  if one “document ” is a query, this is web search
–  if the two documents are homework submissions,

can detect plagiarism
– …

•  Goal: algorithm to compute similarity
 – Actually, we’ll compute “distance” = 1/
similarity

Problem Definition
•  Need unambiguous definition of similarity
•  Word: sequence of alpha characters

 – Ignore punctuation, formatting
• Document: sequence of words
• Word frequencies:

 D(w) is number of occurences of w in D
• Similarity based on amount of word overlap

Vector Space Model
•  [Salton, Wong, Yang 1975]
•  Treat each doc as a vector of its words

 – one coordinate per word of the English dictionary
e.g. doc1 = “the cat”

doc2 = “the dog”
‘the’

‘cat’

‘dog’

1
1

1

 – similarity by dot‐product
D1 ◦D2 ≡

�

w

D1(w) · D2(w)

 – trouble: not scale invariant
documents “the the cat cat” and “the the dog dog”

will appear closer than doc1 and doc2

d1 ◦ d2 = 1

Vector Space Model
•  Solution: Normalization

–  divide by the length of the vectors

–  measure distance by angle:

e.g. θ=0 documents “identical”
 (if of the same size, permutations of each other)

 θ=π/2 not even share a word

D1 ◦ D2

||D1|| · ||D2||

θ(D1, D2) = acos
�

D1 ◦ D2

||D1|| · ||D2||

�

Algorithm
•  Read file
•  Make word list (divide file into words)
•  Count frequencies of words
•  Suppose each document has been processed into a list

of distinct words with their frequencies
•  Compute dot product

–  for every word in the first document, check if it appears in
the other document; if yes, multiply their frequencies and
add to the dot product
•  worst case time: order of #words(D1) x #words(D2)

–  micro-optimization:
•  sort documents into word order (alphabetically)
•  after having sorted, can compute inner product in time

 #words(D1) + #words(D2)

Python Implementation
•  Docdist1.py (on course website)
•  Read file: read_file(filename)

 – Output: list of lines (strings)
• Make word list: get_words_from_line_list(L)

 – Output: list of words (array)
• Count frequencies: count_frequency(word list)

 – Output: list of word‐frequency pairs
• Sort into word order: insertion_sort()

 – Output: sorted list of pairs
• Dot product: inner_product(D1, D2)

 – Output: number

Inputs:
•  Jules Verne: 25K
•  Bobbsey Twins: 268K
•  Francis Bacon: 324K
•  Lewis and Clark: 1M
•  Shakespeare: 5.5M
•  Churchill: 10M

Profiling (docdist2.py)
•  Tells how much time spent in each routine

 – import profile
 – profile.run(“main()”)

• One line per routine reports
 1. #calls
 2. #total time excluding subroutine calls
 3. Time per call (#2/#1)
 4. Cumulative time, including subroutines
 5. Cumulative per call (#4/#1)

What’s with +?
•  L=L1+L2 is concatenation of arrays
•  Take L1 and L2
•  Copy to a bigger array
•  Time proportional to sum of lengths
•  Suppose n single-word lines
•  Time 1+2+…+n = n(n+1)/2 = Θ(n2)

Solution
•  word_list.extend(words_in_line) : appends list

named “words_in_line” to list named “word_list”
•  Takes time proportional to length of list

“words_in_line”
•  Total time in example of n single-word lines: Θ(n)
•  resulting improvement:
– get_words_from_line_list 23sà0.12s

Further Improvements
•  Docdist4.py: count frequencies of words using

dictionary: total to 42s
•  5.py: Process words instead of chars: to 17s
•  6.py: merge sort instead of insertion sort: 6s
•  7.py: remove sorting altogether and use dictionary

(again) for inner product: 0.5s
•  Overall improvement from 94 s to 0.5 s.
•  This is the equivalent of 12 years of progress in

hardware (if Moore’s law still held, which it
doesn’t)

Next time: Peak Finding

•  n x n table of numbers (heights of points)
•  Find a point that is bigger than its neighbors
•  i.e. a local maximum
•  can do this by querying O(n2) locations of table
•  faster?

