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Today’s Menu 
•  Motivation  
•  Course Overview 
•   Administrivia 
•  Linked Lists and Document Distance 
•  Intro to “Peak Finding” 



“Al-go-rithms”: what? 

•  Nothing to do with Log-arithms J 
•  Def: A well-specified method for solving a 

problem using a finite sequence of instructions. 
•  Description might be English, Pseudocode, or  

real code 
•  Key: no ambiguity 
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Efficient Algorithms: Why? 
•  Solving problems consumes resources that are  

often limited/valuable: 
   – Time: Plan a flight path  
   – Space: Process stream of astronomical data  
   – Energy: Save money  

• Bigger problems consume more resources  
• Need algorithms that “scale” to large inputs, e.g. 

searching the web… 
•  Market value: 6.006 is useful in all kinds of job 

interviews ;-)  



Efficient Algorithms: How? 
•  Define problem:  
– Unambiguous description of desired result  

•  Abstract irrelevant detail  
–  “Assume the cow is a sphere”  

•  Pull techniques from the “algorithmic toolbox”  
–  [CLRS] class textbook  

•  Implement and evaluate performance  
– Revise problem/abstraction  

•  Generalize  
– Algorithm to apply to broad class of problems 



Class Content 
•  8 modules with motivating problem/pset  
•  Linked Data Structures: Document Distance/

Flight Planning  
•  Divide & Conquer: Peak Finding 
•  Hashing: Efficient File Update/Synchronization 
•  Sorting  
•  Graph Search: Rubik’s Cube 
•  Shortest Paths: Google Maps  
•  Dynamic Programming: print justification  
•  Wildcard: numerical/NP-hardness/crypto 



Administrivia 
•  Course information: class website 
•  Profs: Costis Daskalakis, Silvio Micali 
•  TAs: Deckelbaum, Ionescu, Kishore, Oliveira, Wu  
•  Sign-up to the homework submission website: 

https://alg.csail.mit.edu (same as https://sec.csail.mit.edu/) 
•  Piazza: online discussion  
•   Prereqs: 6.01, 6.042 (if you don’t have them, talk to us) 
•   Python  
•   Grading:  Problem sets (30%)  

    Quiz1 (March 14 (?): 7.30-9.30pm; 20%) 
    Quiz2( April 18 (?): 7.30-9.30pm; 20%) 
    Exam (30%) 

•   Read collaboration policy! 



Document Distance 
•   Given 2 documents, how similar are they?  
–  if one “document ” is a query, this is web search  
–  if the two documents are homework submissions, 

can detect plagiarism 
– …  

•  Goal: algorithm to compute similarity  
  – Actually, we’ll compute “distance” = 1/
similarity 



Problem Definition 
•  Need unambiguous definition of similarity  
•  Word: sequence of alpha characters  

   – Ignore punctuation, formatting  
• Document: sequence of words  
• Word frequencies:  

   D(w) is number of  occurences of w in D  
• Similarity based on amount of word overlap 



Vector Space Model 
•  [Salton, Wong, Yang 1975]  
•  Treat each doc as a vector of its words  

  – one coordinate per word of the English dictionary 
e.g.  doc1 = “the cat” 

doc2 = “the dog” 
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‘dog’ 

1 
1 
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  – similarity by dot‐product  
D1 ◦D2 ≡

�

w

D1(w) · D2(w)

  – trouble: not scale invariant 
documents “the the cat cat” and “the the dog dog” 

will appear closer than doc1 and doc2 

d1  ◦ d2 = 1  



Vector Space Model 
•  Solution: Normalization 

–  divide by the length of the vectors 

–  measure distance by angle: 

e.g.  θ=0  documents “identical” 
   (if of the same size, permutations of each other) 

   θ=π/2 not even share a word 

D1 ◦ D2

||D1|| · ||D2||

θ(D1, D2) = acos
�

D1 ◦ D2

||D1|| · ||D2||

�



Algorithm 
•  Read file  
•  Make word list (divide file into words)  
•  Count frequencies of words 
•  Suppose each document has been processed into a list 

of distinct words with their frequencies 
•  Compute dot product 

–  for every word in the first document, check if it appears in 
the other document; if yes, multiply their frequencies and 
add to the dot product 
•  worst case time: order of  #words(D1)  x  #words(D2) 

–  micro-optimization: 
•  sort documents into word order (alphabetically) 
•  after having sorted, can compute inner product in time  

    #words(D1) + #words(D2) 



Python Implementation 
•  Docdist1.py (on course website) 
•  Read file: read_file(filename)  

  – Output: list of lines (strings)  
• Make word list: get_words_from_line_list(L)  

  – Output: list of words (array)  
• Count frequencies: count_frequency(word list)  

 – Output: list of word‐frequency pairs  
• Sort into word order: insertion_sort()  

 – Output: sorted list of pairs  
• Dot product: inner_product(D1, D2)  

 – Output: number 



Inputs: 
•  Jules Verne: 25K  
•  Bobbsey Twins: 268K  
•  Francis Bacon: 324K 
•  Lewis and Clark: 1M 
•  Shakespeare: 5.5M  
•  Churchill: 10M 



Profiling (docdist2.py) 
•  Tells how much time spent in each routine  

    – import profile  
    – profile.run(“main()”)  

• One line per routine reports  
 1. #calls  
 2. #total time excluding subroutine calls  
 3. Time per call  (#2/#1)  
 4. Cumulative time, including subroutines  
 5. Cumulative per call (#4/#1) 







What’s with +? 
•  L=L1+L2 is concatenation of arrays 
•  Take L1 and L2 
•  Copy to a bigger array 
•  Time proportional to sum of lengths 
•  Suppose n single-word lines 
•  Time 1+2+…+n = n(n+1)/2 = Θ(n2) 



Solution 
•  word_list.extend(words_in_line) : appends list 

named “words_in_line” to list named “word_list” 
•  Takes time proportional to length of list 

“words_in_line” 
•  Total time in example of n single-word lines: Θ(n) 
•  resulting improvement: 
– get_words_from_line_list 23sà0.12s 



Further Improvements 
•  Docdist4.py: count frequencies of words using 

dictionary: total to  42s 
•  5.py: Process words instead of chars: to 17s  
•  6.py: merge sort instead of insertion sort: 6s  
•  7.py: remove sorting altogether and use dictionary 

(again) for inner product: 0.5s  
•  Overall improvement from 94 s  to 0.5 s. 
•  This is the equivalent of 12 years of progress in 

hardware (if Moore’s law still held, which it 
doesn’t) 



Next time: Peak Finding 

•  n x n table of numbers (heights of points) 
•  Find a point that is bigger than its neighbors 
•  i.e. a local maximum 
•  can do this by querying O(n2) locations of table 
•  faster? 


