
Introduction to Algorithms April 25, 2012
Massachusetts Institute of Technology 6.006
Profs. Constantinos Daskalakis and Silvio Micali Quiz 2

Quiz 2

You will have 2 hours to complete this exam. No notes or other resources are allowed. Unless
otherwise specified, full credit will only be given to a correct answer which is described clearly
and concisely.

Do not discuss this exam with anyone who has not yet taken it.

Problem Points Grade Initials

Name 1

1 24

2 18

3 12

4 25

5 20

Total 100

Name: [1 point]

R01 R02 R03 R04 R05 R06 R07
WF10 WF11 WF12 WF1 WF2 WF3 WF3

Shaunak Shaunak Alan Jeff Rafael Henrique Dragos

6.006 Quiz 2 2

Problem 1. True/False [24 points]

Note: Correct answers are worth 2 points, blanks are worth 0 points, and incorrect answers
are worth -3 points. You will not be graded on any explanation.

(a) Depth-first search can be modified to check if there are cycles in an undirected graph.

True

(b) Breadth-first search can be modified to check if there are cycles in an undirected graph.

True

(c) If we represent a graph with |V | vertices and Θ(|V |) edges as an adjacency matrix,
the worst-case running time of breadth-first search is Θ(|V |2).

True

(d) In this problem, suppose that G is a directed graph and that u and v are vertices of this
graph such that there is a path from u to v in G but no path from v to u.

i. Any depth-first search in G that discovers both u and v must discover u before it
discovers v. 1

False

ii. Any depth-first search in G that discovers both u and v must finish u before it
finishes v. 2

False

iii. Any depth-first search in G that discovers u and later discovers v must finish u
before it finishes v.

False

1In the terminology of CLRS, the discovery time is the time it is colored grey.
2The finishing time is, in the terminology of CLRS, the time in which a vertex is colored black.

6.006 Quiz 2 3

(e) The strongly-connected components of a directed graph are preserved if you reverse
every edge — that is, if you replace every edge (u, v) of the graph with the edge
(v, u).3

True

(f) We can use Dijkstra’s algorithm to find the shortest path between two vertices in a
graph with arbitrary edge weights.

False

(g) The worst-case running time of A* is asymptotically better than the worst-case run-
ning time of Dijkstra’s algorithm.

False

(h) Suppose that s and t are vertices in a weighted graph G that does not contain negative
cycles, and suppose that there is a path from s to t. We run Bellman-Ford on G with
starting vertex s.

i. If there is a shortest path from s to t consisting of k edges, then after the kth

iteration, then Bellman-Ford’s estimate of the distance to t will be correct.

True

ii. If Bellman-Ford’s estimate of the distance to t is correct after the kth iteration,
then there is a shortest path from s to t consisting of at most k edges.

False

(i) If we draw out the full recursion tree of a problem that can be sped up by memoization,
the same subproblem might appear multiple times in the tree.

True

3Recall that u and v are in the same strongly connected component if there is a path from u to v and a path from v
to u.

6.006 Quiz 2 4

Problem 2. Short Answers [18 points]

(a) [6 points] Mark the entries of the following table that correspond to properties that
are true of counting and radix sort, as described in lecture.

Solution:

Property Counting sort Radix sort
Can be implemented so it is stable X X

Can be implemented so it is in-place
Sorts n integers in the range {0, 1, . . . , nc}

in O(n) time, for any constant c > 0. X

Note: We gave everyone full credit for the in-place question. This is because,
while what we did in classl

(b) [8 points] On which of the following undirected graphs does bi-directional breadth-
first search perform asymptotically better than regular breadth-first search? Circle the
numbers of all that apply.
i. A path graph on n vertices, in which s and t are connected by a path of
length n− 1 (and there are no other edges).
ii. A complete graph, in which there is an edge between every pair of vertices.
iii.© A star graph, in which s, t, and n − 3 other vertices are all connected to a central
nth vertex (and there are no other edges).
iv©. A balanced binary tree on n vertices in which s and t are leaves.

(c) [4 points] Ben Bitdiddle thinks it is possible to find s-t shortest paths on any weighted
graph using the following algorithm:

1. Find the minimum weight, m, of any edge.
2. Subtract m from the weight of every edge - that is, let w′(i, j) equal w(i, j)−m.
3. Run Dijkstra on the transformed graph.

Draw a three-vertex directed graph with vertices s, t, and u on which Ben’s algorithm
does not find the shortest path from s to t. Label the vertices and assign non-negative
weights to the edges to construct your counterexample.

Solution:
Any graph where the shortest s → t path goes directly from s to t,, yet goes through
u after transforming. For example, have w(s, u) = w(u, t) = 2 and w(s, t) = 3.

6.006 Quiz 2 5

Problem 3. Bellman-Ford [12 points]

In this problem, you must run Bellman-Ford manually on the directed graph provided below, start-
ing at the source vertex S. In each iteration, the edges will be relaxed in the following order: BC,
AC, BA, SA, and SB.

(a) [8 points] Fill in the table with the distance estimates for each vertex after each itera-
tion. Note that all the edges are relaxed in each iteration. For example, after the first
iteration, you should find that the distance estimate for B is −2.
Solution:

Vertex Iteration 0 Iteration 1 Iteration 2 Iteration 3
S 0 0 0 0
A ∞ 3 2 2
B ∞ -2 -2 -2
C ∞ ∞ 4 3

(b) [4 points] In the worst case, the Bellman-Ford algorithm runs for |V | − 1 iterations,
where |V | is the number of vertices. However, for this particular graph, there exists
an ordering of the edges such that for any edge weights, the Bellman-Ford algorithm
will terminate after a single iteration.
Give one such edge ordering, and briefly explain why it works.

Solution: Since the graph is a DAG, we can take any ordering which will process all
of the edges of a path in the correct order. In particular, a sequence works if and only
if for every node, the incoming edges are relaxed before any of the outgoing edges.
There are actually many such sequences.

6.006 Quiz 2 6

Problem 4. Optimal Travel Plans [25 points]

In this problem, your goal is to determine a sequence of flights between airports which will get you
from your current location to a target destination as quickly as possible.

Each airport is represented by a vertex on a directed graph G = (V, E). Each directed edge
e = (u, v) in the graph has an associated array, e.flights. The array e.flights has at most k
entries. The ith entry in the array is a pair (depi, arri), which means that a direct flight leaves u at
time depi and arrives at v at time arri.

For each edge e, the array e.flights satisfies the following constraints:

1. No flight can arrive before it departs:

For each i, depi < arri.

2. The array is sorted by increasing departure time:

For each i, depi < depi+1.

3. Flights that depart later also arrive later:

For each i, arri < arri+1.

Given a source node s and an initial starting time, your goal is to determine a sequence of flights
that can be taken to reach a target node t as early as possible. Of course, in order for you to take a
flight, you must be at airport that the flight departs from by the time that it departs.

Continue to the next page.

6.006 Quiz 2 7

(a) [20 points] Design and analyze an efficient algorithm to compute a sequence of flights
which arrives at t as early as possible. Be sure to explicitly state your algorithm’s
running time in terms of |V |, |E|, and k.

Note: You will receive 6 points for a blank answer to this question. You will get
more than 6 points for progress towards a correct solution, but any other text will
count against you.

Solution:
We solve this problem by running a slightly modified variant of Dijkstra’s algorithm
(using a fibonacci heap, for optimal running time.) In our algorithm, for each node v
we will keep track of d[v] which is earliest time for which we know it is possible to
arrive at v, when we leave from s at t = 0. (We initialize d[v] = ∞ for all v 6= s and
d[s] = 0.) We now run Dijkstra’s algorithm using these d values. The only difference
is in how we relax an edge.
Consider relaxing edge e = (u, v). Because of the properties of e.flights, we know
that leaving u for v as early as possible will be at least as good as having a longer
layover in u and leaving for the direct u → v flight later. Therefore, we look for the
smallest i∗ such that the corresponding departi∗ in e.flights is greater than or equal to
d[u]. We can use binary search to find this i in time O(log k).
To relax the edge e = (u, v), we set d[v] to be the minimum of the current d[v] and
d[v] + arrivei∗ .
The correctness of this algorithm follows from the correctness of Dijkstra’s algo-
rithm. The running time, using a fibonacci heap for the Dijkstra priority queue, is
O(V log V + E log k). (The O(log k) term comes from needing to find the earlier
flight to take on a given edge.)
Partial credit was given for the O(V log V + kE) solution which did a linear scan
through the departure times. Also, note that using binary heaps instead of a fibonacci
heap gives running time O(log kE log V).
Note that this problem was a modified (harder) version of an idea from
http : //www.csl.mtu.edu/cs2321/www/newLectures/30 More Dijkstra.htm

Notes on grading:

• Getting runtimes using binary heaps instead of Fibonacci heaps lost you no
points.
• Not getting the binary search step caused you to lose 2 points.
• There were other solutions which involved modifying the graph, which got

a worse running-time, and thus 16 or 12 points, depending on whether the
transformation obtains Ek or V Ek edges in the new graph.

6.006 Quiz 2 8

(b) [5 points] Suppose now that we now have additional geographic information about
the graph. In particular, we model the Earth as a plane, and we determine the location
(xu, yu) of each airport in the plane. We also know that the speed of any plane is
bounded by a top speed, s.
Explain how to use a heuristic to speed up your search algorithm in practice. Be sure
to explicitly define any heuristic functions that you use.

Note: Use at most four sentences. You should only need half of this page.
Solution: We can use a heuristic of h(u) =

√
(xu − xt)2 + (yu − yt)2/c, which is

clearly a lower bound on the minimum time it will take to get from u to t. We modify
our Dijkstra algorithm analogously to A∗: instead of sorting our queue by d values,
we sort by d + h values.

6.006 Quiz 2 9

Problem 5. Longest Football Subsequence [20 points]

In the game of football, teams can score 2, 3, or 7 points at a time. A football sequence is a
sequence of valid scores for the two teams in a football game. That is, it is a sequence of pairs of
nonnegative integers (ai, bi) that satisfies the following properties:

1. The initial scores are 0:

(a0, b0) = (0, 0).

2. Exactly one team scores at a time:

For all i, either ai+1 = ai or bi+1 = bi, but not both.

3. Teams score in the correct increments:

If ai+1 6= ai, then ai+1 − ai is either 2, 3 or 7, and

If bi+1 6= bi, then bi+1 − bi is either 2, 3 or 7

For example, the following sequence is a football sequence:

(0, 0), (0, 3), (0, 5), (7, 5), (7, 12), (9, 12).

In this problem, your goal is to determine the length of the longest football subsequence of a given
n-element sequence S of pairs of nonnegative integers (xi, yi). (Note that your subsequence may
include non-consecutive elements of S, as long as their relative order is preserved.)

For example, if
S = (2, 7), (0, 0), (7, 0), (0, 3), (0, 6), (7, 6)

then the longest football subsequence is

(0, 0), (0, 3), (0, 6), (7, 6),

so your algorithm should return 4.

Continue to the next page.

6.006 Quiz 2 10

(a) [10 points] Give a simple dynamic programming algorithm which finds the size of the
largest football subsequence in time O(n2). Briefly prove your algorithm’s runtime
and argue its correctness.

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Solution:
Let C[i] be the length of the longest football subsequence which ends at S[i]. We now
do a scan of S from left to right to compute the C values. To compute C[i], we need
only look at the values between C[1], . . . , C[i − 1] and look at the maximum value
C[j] for which we could append S[i] after S[j]. The correctness of this algorithm
follows trivially by induction: Given that we have computed the first i− 1 values of C
correctly, it follows that any football subsequence ending with S[i] is constructed by
taking a football subsequence ending before i and (if valid) appending S[i] to the end.
(If S[i] = (0, 0), then we can instead have the length-1 subsequence consisting of S[i].
Since football subsequences are increasing, (0, 0) can only appear at the beginning of
a subsequence.)
This gives us the following pseudocode algorithm:

• Initialize C[i] = −∞ for all i

• For i = 1 to n:
– Let c∗ be the maximum C[j] value for j < i such that S[i] can immediately

follow S[j] in a valid football sequence (that is, the first components are equal
and the second component increases by 2, 3, or 7, or instead the second com-
ponents are equal and the first component increases by 2, 3, or 7.) If no such
j exists, set c∗ to −∞.

– If S[i] == (0, 0), set C[i]← 1.
– Otherwise, set C[i]← c∗ + 1.

• Return max{maxi C[i], 0}.
Notice that in the final step, we return max{maxi C[i], 0}. This deals with the case
that (0, 0) does not appear in S.
Our algorithm has running time O(n + 1 + 2 + 3 + · · ·+ (n− 1)) = O(n2).

6.006 Quiz 2 11

(b) [10 points] Design and analyze the most efficient algorithm you can for this problem.
Be sure to explicitly state your algorithm’s running time in terms of n, and briefly
argue its correctness.

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Solution:
We can solve this problem by doing a single linear scan through S. As before, we let
C[i] be the length of the longest football subsequence ending at S[i]. We note that, for
S[i] to appear in a sequence, there are at most 6 possible terms that could immediately
proceed S[i] (corresponding to subtracting 2, 3, or 7 from either the first or second
component.)
As we scan S, we will hash each pair (a, b) for which we have found an j with S[j] =
(a, b) and C[j] > 0. The value of (a, b) will be the length of the longest football
subsequence we have found thus far which ends at (a, b). We will compute C[i] by
searching for all six possible proceeding (a, b) pairs in the hash table, and setting C[i]
to be 1 more than the maximum of the corresponding C values for these six pairs. We
give pseudocode for this algorithm below. Correctness follows from a trivial induction
argument, similar to that above.

• Create a hash table d.
• For i = 1 to n:

– Denote by (a, b) the term S[i].
– If (a, b) == (0, 0), set C[i]← 1 and d[(0, 0)]← 1.
– Else:
∗ Let P be the set of the (at most 6) pairs which could possibly proceed

(a, b) in a football sequence. (i.e., P consists of the terms (a − 7, b), (a −
3, b), (a − 2, b), (a, b − 7), (a, b − 3), (a, b − 2) in which both values are
nonnegative.)
∗ If there exists a p ∈ P for which d.has key(p), let c∗ be maxp∈P d[p] (if

any p is not in d, initialize its value to−∞). Set C[i]← c∗ and d[(a, b)]←
max{d[(a, b)], c∗ + 1}.
∗ Otherwise, set c[i]← −∞.

• Return max{maxi C[i], 0}.

By resizing our hash table appropriately, the amortized running time for our hash
operations will be O(1) per operation. Therefore, each iteration of the inner loop
takes O(1) time, and therefore the overall running time is O(n). (Notice that there are
several slight variations of this algorithm which also achieve O(n) running time.)

