
6.006 Intro to Algorithms Recitation 19 April 15, 2011

Dynamic Programming: 1D Optimization

Fibonacci Sequence
To efficiently calculate F [x], the xth element of the Fibonacci sequence, we can construct the array
F from left to right (or “bottom up”). We start with F [0] = 1 and F [1] = 1 and iteratively calculate
the next number in the sequence using F [i] = F [i− 1] + F [i− 2] until we get F [x].

Crazy 8’s
In the game Crazy 8’s, we want to find the longest subsequence of cards where consecutive cards
must have the same value, same suit, or contains at least one eight. If the cards are stored in array
C, we want to keep an auxiliary score array S where S[i] represents the length of the longest
subsequence ending with card C[i]. Again, we will construct the array C from left to right (or
“bottom up”).

We start with S[0] = 1 since the longest subsequence ending with the first card is that card
itself and has a length of 1. We iteratively calculate the next score S[i] by scanning all previous
scores and set S[i] to be S[k] + 1 where S[k] represents the length of the longest subsequence that
card C[i] can be appended to.

Dynamic Programming: 2D Optimization

Edit Distance
In the edit distance problem, we have two strings X and Y . Our goal is to find out the minimum
cost of transforming string X into string Y using a set of editing operations. We will iterate through
the characters of X and at each character, we have three editing operations that we can make:

1. Copy the current character of the source into the output

2. Delete the current character of the source and go onto the next character

3. Insert a new character into the output string

For example, let’s look at how we can edit MAKER to DATE



6.006 Intro to Algorithms Recitation 19 April 15, 2011

Using a sequence of [Insert(D), Delete, Copy, Insert(T), Delete, Copy, Delete], we were able
to edit MAKER into DATE. Note that this sequence is not unique. We could have swapped the
first Insert(D) and Delete with each other without changing the final result. A naive edit could
have been deleting all of MAKER and then inserting all of DATE, making no copies in the edit
sequence.

There are many ways we can edit X to Y , but we want to find which edit sequence has min-
imum cost. Each of the editing operations has some cost associated to it. For instance, we can
assign costs as such:

• Copy - Cost 5

• Delete - Cost 10

• Insert - Cost 7

Our editing sequence [Insert(D), Delete, Copy, Insert(T), Delete, Copy, Delete] has a total
cost of 54 according to our cost model. If we chose to delete all of MAKER and then insert all of
DATE, we could have made 5 deletions and 4 insertions, resulting in a total cost of 78. Clearly,
our first editing sequence is better than this naive edit, but how can we figure out what’s the best
overall?

Let X ′ and Y ′ be the strings X and Y without their last character (e.g. if X is DATE, X ′ is
DAT). An important observation to make is that we can construct an editing sequence from X to
Y in at most three ways:

1. Take the minimum cost editing sequence of X ′ to Y ′. If the next characters are equal, then
we can append a Copy to that editing sequence



6.006 Intro to Algorithms Recitation 19 April 15, 2011

2. Take the minimum cost editing sequence of X to Y ′ and append an Insert(last character of
Y ) to that editing sequence

3. Take the minimum cost editing sequence of X ′ to Y and append a Delete to that editing
sequence

Here, we are using optimal solutions to smaller problems to help us construct an optimal so-
lution to the total problem. Using proof by contradiction, we can prove that the minimum cost
editing sequence of X to Y must be one of the three sequences resulting above. To figure out
which sequence is the best, simply take the minimum of the three sequences’ costs and that will be
the minimum editing sequence for X to Y .

Like the Fibonacci and Crazy 8’s examples, we want to construct the minimum editing se-
quence from bottom up. We do NOT want to start at figuring out the sequence from X to Y and
recursively solving for the sequences from X ′ to Y ′, X to Y ′, and X ′ to Y . Instead, we can start
with the smallest sequences and construct larger sequences from optimal solutions that we run into.

To solve this problem, we are going to use a 2D matrix. Each cell in the matrix corresponds
to the cost of a minimum cost editing sequence to transform a prefix of X to a prefix of Y . In the
example below, the shaded cell will contain the cost of editing MAKE into D.

Each cell will also contain the last operation of the editing sequence for that particular trans-
formation. Note that for each cell, based on our important observation above, we can construct
an optimal editing sequence only if the above cell, left cell, and above left cell are filled (or non-
existent in the case of border cells).



6.006 Intro to Algorithms Recitation 19 April 15, 2011

From here, we can now systematically fill out our matrix. For each cell, compare the cost of
appending a delete to the above cell, appending an insert to the left cell, and appending a copy
to the above-left cell ONLY if the characters are the same. Take the minimum of those costs and
append the corresponding operation. We get something like this:

Note the order of the cells that we’re filling in (top to down from left to right). This order
ensures that every time we reach an empty cell, the cells above, left, and above-left will be filled
and consequently the empty cell can be filled in as well. There are several orders that work in this
case (left to right from top to down, diagonally, etc.) Also, note that we can only make a copy
operation when we’re in a cell whose row and column are the same (in this case the copy operation
was in an A row and an A column). The finished matrix looks like this:



6.006 Intro to Algorithms Recitation 19 April 15, 2011

The optimal solution for editing MAKER to DATE is found in the lower right cell and has
a cost of 54. We can trace the exact operations in this sequence by starting at a cell and then
backtracing all the way to the first cell. We move up on Insert, left on Delete, and up-left on Copy.

The running time of this algorithm is O(n2) where n is the length of the strings. We need to
construct a n × n size matrix and filling each cell in the matrix takes constant time (assuming the
previous cells are already filled). Once we fill out each cell in the matrix, we have a solution to the
edit distance problem.

All Pairs Shortest Path: Floyd-Warshall
Bellman-Ford and Dijkstra’s algorithms both solve the single source shortest path problem, but in
some cases it would be useful to know the shortest path between any pair of vertices in a graph. We
could run Bellman-Ford or Dijkstra’s V times, using each vertex as a source, to solve the problem.
This takes O(V 4) in the worst case for Bellman-Ford in the case of a dense graph. However, we
can do better with dynamic programming.

Floyd-Warshall is a dynamic programming algorithm that solves the all pairs shortest path
problem. Floyd-Warshall has subproblems where we find the shortest paths between all pairs of
vertices with the constraint that only a subset of the total vertices are allowed to be intermediate
vertices in a path. We denote c(k)ij to be the shortest path length from vi to vj using only the vertices
{v1, v2, ..., vk} as allowable intermediate vertices. c

(0)
ij is the shortest path length from vi to vj

using no intermediate vertices. c(n)ij will be the shortest path length from vi to vj using all vertices
as allowable intermediate vertices, i.e. c(n)ij will be the shortest path length from vi to vj .



6.006 Intro to Algorithms Recitation 19 April 15, 2011

The first iteration of Floyd-Warshall is the subproblem where we find the shortest paths between
all pairs of vertices with no vertices allowed to be intermediate vertices. This means the only
shortest paths we find are the paths with no intermediate vertices, i.e. the paths with single edges.
c
(0)
ij = w(vi, vj) if there’s an edge from vi to vj ,∞ otherwise.

At iteration k of Floyd-Warshall, we add a single vertex vk into the set of allowable intermediate
vertices. For each vi and vj , we check to see if allowing this vertex to be an intermediate vertex
will improve the shortest path estimate from vi to vj by using the relaxation concept. If the original
shortest path estimate c

(k−1)
ij is greater than c

(k−1)
ik + c

(k−1)
kj , then we update c

(k)
ij = c

(k−1)
ik + c

(k−1)
kj .

Otherwise, c(k)ij = c
(k−1)
ij if adding vk as an intermediate vertex does not improve the shortest path.

The pseudocode in lecture demonstrates the concept succinctly. Assume in this case C is a
matrix where C[i][j] refers to the shortest path estimate from vi to vj . C[i][j] is initialized to be
the weight of the edge from vi to vj if it exists,∞ if it doesn’t.

for k = 1 to n:
for i = 1 to n:

for j = 1 to n:
if C[i][j] > C[i][k] + C[k][j]:
C[i][j] = C[i][k] + C[k][j]

Once the loops finish, C[i][j] will contain the shortest path length from vi to vj . Augmenting
the algorithm to maintain path pointers is trickier though. The runtime of Floyd-Warshall is O(n3)
if there are n vertices.


