
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 28, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 7

Problem Set 7
This problem set contains two theory questions. The problem set is due Friday, May 5th at
11:59PM.
Solutions should be turned in through the course website. Your solution should be in PDF format
using LATEX. Remember, your goal is to communicate. Full credit will be given only to a correct
solution which is described clearly. Convoluted and obtuse descriptions might receive low marks,
even when they are correct. Also, aim for concise solutions, as it will save you time spent on
write-ups, and also help you conceptualize the key idea of the problem.

Problem 7-1. [50 points] Ghostbusters and Ghosts

A group of n Ghostbusters is battling n ghosts. Each Ghostbuster carries a proton pack, which
shoots a stream at a ghost, eradicating it. A stream goes in a straight line and terminates when it
hits the ghost. The Ghostbusters decide upon the following strategy. They will pair off with the
ghosts, forming n Ghostbuster-ghost pairs, and then simultaneously each Ghostbuster will shoot a
stream at his chosen ghost. As we all know, it is very dangerous to let streams cross, and so the
Ghostbusters must choose pairings for which no streams will cross.

Assume that the position of each Ghostbuster and each ghost is a fixed point in the plane and that
no three positions are collinear.

(a) [25 points] Argue that there exists a line passing through one Ghostbuster and one
ghost such that the number of Ghostbusters on one side of the line equals the number
of ghosts on the same side. Describe how to find such a line in O(n lg n) time.

Solution: Find the bottom, left-most point as in Graham scan. Sort the remaining
points (by angle) from that point. Assume that the bottom, left most point is a Ghost-
buster. Visit the sorted points by increasing angle, keeping track of the difference
between number of visited Ghostbusters and Ghosts. Stop when the difference is -1,
and connect the point to the bottom, left-most point. Run time is dominated by the
sort, which takes O(n lg n)-time.

(b) [25 points] Give an O(n2 lg n)-time algorithm to pair Ghostbusters with ghosts in
such a way that no streams cross.

Solution: Using the above algorithm matches one pair of Ghostbuster and Ghost. On
each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are
the same, so use the algorithm recursively on each side of the line to find pairings. The
worst case is when, after each iteration, one side of the line contains no Ghostbusters
or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P (n2 lg n)-
time algorithm.



2 Problem Set 7

Problem 7-2. [50 points] Three is company
With MIT set to increase the size of the incoming class, the evil Housing Office has decided to turn
some East Campus doubles into triples. The existing residents of those rooms are understandably
concerned about getting saddled with somebody lame, and so they put their considerable overengi-
neering prowess to work on the problem.

On the way back from putting an ironic protest installation on top of the dome, one of the students
responsible for making housing arrangements has an epiphany (or, at the least, heavily caffeinated
inspiration) and proposes the following scheme. Say that Alice and Bob are the existing room-
mates; to determine their compatibility with a prospective freshman, they each choose a set of n
distinct integers in the range {0, . . . ,m} (A and B, respectively) which correspond to their re-
sponses to a survey.

Each freshman will also be asked the same questions, producing a similar set C. Alice and Bob
will be considered compatible with that freshman if there is some a ∈ A, b ∈ B, and c ∈ C such
that a + b = c. Describe an O(mlog2 3)-time algorithm for determining whether the prospective
roommate is compatible with Alice and Bob. (Hint: represent each set as a sequence of 0-1
coefficients of a polynomial.)

Solution: Create polynomials Â(x) and B̂(x) of degree m such that ai = 1 iff i ∈ A and bj = 1

iff j ∈ B. Compute D̂(x) = Â(x) · B̂(x). Note that dk > 0 iff there are i ∈ A and j ∈ B such that
k = i+ j and ai = 1 and bj = 1. Now we just need to check whether dk = ck = 1 for any k.

Each polynomial can be created in O(m) time. We use Karatsuba’s algorithm for multiplying
the polynomials, which takes O(mlg2 3) time. Checking to see if dk = ck = 1 takes linear time.
Overall, the running time is O(mlg2 3).


