
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 12, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 6

Problem Set 6
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Both Part A and Part B questions are due Friday, April 29 at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in
PDF format using LATEX. Your solution to Part B should be a valid Python file which runs from
the command line. A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to a correct solution which
is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they
are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also
help you conceptualize the key idea of the problem. See the course website for our full grading
policy.

Part A:

Problem 6-1. [10 points] Placing Parentheses

You are given an arithmetic expression containing n real numbers and n−1 operators, each either +
or×. Your goal is to perform the operations in an order that maximizes the value of the expression.
That is, insert parentheses into the expression so that its value is maximized.

For example:

• For the expression 6×3+2×5, the optimal ordering is to add the middle numbers first, then
perform the multiplications: (6× (3 + 2))× 5 = 150.

• For the expression 0.1× 0.1+ 0.1, the optimal ordering is to perform the multiplication first,
then the addition: (0.1× 0.1) + 0.1 = 0.11.

• For the expression (−3)× 3 + 3, the optimal ordering is ((−3)× 3) + 3) = −6.

(a) [3 points] Clearly state the set of subproblems that you will use to solve this problem.

(b) [4 points] Write a recurrence relating the solution of a general subproblem to solutions
of smaller subproblems.

(c) [3 points] Analyze the running time of your resulting dynamic programming algo-
rithm, including the number of subproblems and the time spent per subproblem.

Problem 6-2. [15 points] Text Formatting

2 Problem Set 6

You are given a sequence of words. Each word has a length. Your goal is to split the text up into
lines. Each line’s badness is defined as:((∑

words in line

length of word

)
− (target line length)

)2

where the target line length is a given value. You want to minimize the total badness of all the lines
in your result.

(a) [3 points] Clearly state the set of subproblems that you will use to solve this problem.

(b) [4 points] Write a recurrence relating the solution of a general subproblem to solutions
of smaller subproblems.

(c) [3 points] What’s the running time of your resulting dynamic programming algo-
rithm?

(d) [5 points] Say you want to minimize the maximum badness of any line in the result,
instead of minimizing the sum of each line’s badness. How would you modify your
algorithm?

Problem 6-3. [10 points] Dungeons and Dragons and Dynamic Programming
You are travelling through a dungeon which is represented by an n × n grid. Each square has a
monster to fight or a healing potion. You start in the bottom row, and from any square, you can
only move to the following squares:

1. The square immediately above

2. The square that is one up and one to the left (but only if you are not already in the leftmost
column)

3. The square that is one up and one to the right (but only if you are not already in the rightmost
column)

Each time you move to a square (i, j), your Hit Points change by HP(i, j). This amount might be
positive, if there’s a healing potion on that square, or negative, if there’s a monster to fight. Your
Hit Points start at H and cannot go above this value even if you drink a healing potion. All Hit
Point values are integers.

In addition, when you move to a square (i, j), you gain XP(i, j) Experience Points. Give an algo-
rithm that figures out the sequence of moves from somewhere along the bottom edge to somewhere
along the top edge that maximizes the total number of Experience Points you gain. However, you
must do this without ever reaching 0 or fewer Hit Points.

You are free to pick any square along the bottom edge as a starting point and any square along
the top edge as a destination. Your Hit Points and Experience Points are affected by your starting
square as well as whatever other squares you move to.

Analyze the running time of your algorithm.

Problem Set 6 3

Problem 6-4. [15 points] Railroads and Gauges
Professor Martin McFly has been transported back in time to the year 1885, with nothing but his
laptop, and needs to make enough money to fix his flying DeLorean and get back to the 80s. He
decides to take a job for the railroad company solving a pressing problem that they are having.

There are n towns, each with one of five different gauges (track widths) of railroad tracks. We can
call these different gauges A, B, C, D, and E. The railroad company also provides McFly with
a map of the proposed railroad connections between the towns, which also contains a number of
switching stations where three tracks (possibly of different gauges) get merged together. These
switches are the only type available, and you are not allowed to change their setup.

Professor McFly is put in charge of determining what gauge of track to place in each connection
(track gauges cannot be changed except at switching stations). The track within each town is in
place, and you are therefore unable to change what gauge to use until the first switching station out
of the town.

The cost at each switching station can be 0, 1, or 2. If all tracks are the same gauge, the cost is 0.
If two are the same and one is different, the cost is 1. If all three gauges are different, the cost is 2.
McFlys job is to minimize the cost over all the railroad connections.

One thing that Professor McFly notices is that the map he is given is actually a spanning tree over
the graph of all possible connections between the towns. All the vertices in this tree have degree of
either 1 (a town) or 3 (a switching station). The vertices that correspond to towns have the gauges
set already, and all McFly must do is determine what gauges of track to use for the edges from the
switching stations.

You are to help Professor McFly out by giving an algorithm to output the optimal (lowest) cost of
the railroad connections, and print the list of what gauge of track each connection is. You must
prove your algorithm to be correct, and justify a bound on its running time. Since McFly has no
power outlet to plug his laptop into, he needs an algorithm that runs as efficiently as possible.

Part B:

Problem 6-5. [50 points] Website Rankings
In class, you saw that the length of the longest common subsequence can be computed in O(n2)
time for two strings x and y of length n, using dynamic programming. In this problem, you will
learn how to compute it in O(n log n) time for non-repetitive strings.

Theory part (25 points). Definitions for three sequences x = (x1, . . . , xn), y = (y1, . . . , ym),
and z = (z1, . . . , zn):

• We say that t = (t1, . . . , tk) is a subsequence of z if there is a sequence (i1, . . . , ik) of k
indices such that i1 < i2 < . . . < ik, and for all j, tj = zij .
Example: (1, 3, 4) and (3, 2, 6, 5) are both subsequences of (1, 3, 2, 6, 4, 5).

4 Problem Set 6

• We write LIS(z) to denote the length of the longest increasing subsequence of z.
Example: LIS((6, 2, 7, 5, 3, 4)) = 3, and this corresponds to the subsequence (2, 3, 4).

• We write LCS(x, y) to denote the length of the longest common subsequence of x and y.
Example: LCS((6, 2, 7, 5, 3, 4), (5, 6, 1, 7, 3, 4)) = 4, and this corresponds to the subse-
quence (6, 7, 3, 4).

• We say that z is non-repetitive if no integer appears twice in it.
Example: (5, 6, 1, 7, 3, 4) is non-repetitive, and (4, 6, 1, 7, 1, 3) is not.

Design algorithms for the following two problems:

1. Show how to compute LIS(z) for a sequence z of n integers in O(n log n) time.
Hint 1: Use the following sequence of arrays Ai. Let Ai[j], where i, j ∈ {1, 2, . . . , n}, be
the lowest integer that ends an increasing length-j subsequence of (z1, . . . , zi). If (z1, . . . , zi)
has no increasing subsequence of length j, then Ai[j] =∞.
Hint 2: How can Ai be turned into Ai+1 in O(log n) time? How can LIS(z) be extracted
from An?

2. Show how to compute LCS(x, y) for two non-repetitive integer sequences x and y of length
n in O(n log n) time.
Hint 1: Reduce to the previous problem.
Hint 2: Create a sequence z from y in the following way. Remove all integers from y that
do not appear in x, and replace the other ones by their index in x. How is LIS(z) related to
LCS(x, y)?

Coding part (25 points). Consider two web search engines A and B. We send the same query,
say “6.006”, to both search engines, and in reply we get a ranking of the first k pages according
to each of them. How can we measure the similarity of these two rankings? Various methods for
this have been designed, but here, we’ll use the simplest of them: LCS, the length of the longest
common subsequence of the rankings.

Your task is to write a function longest common subsequence() that uses the above
O(n log n) algorithm to compute LCS for two rankings. Your function should take two lists of
URLs as its arguments, and should return their LCS as an integer. We assume that pages are
identical only if their URLs are identical. No URL appears twice in a ranking.

Sample Input

http://courses.csail.mit.edu/6.006/spring08/
http://courses.csail.mit.edu/6.006/fall07/
http://www.eecs.mit.edu/ug/newcurriculum/6006blurb.pdf
http://alg.csail.mit.edu/
http://courses.csail.mit.edu/6.006/fall09/

Problem Set 6 5

http://courses.csail.mit.edu/6.006/fall09/
http://courses.csail.mit.edu/6.006/spring08/
http://mit.worldcat.org/profiles/MITLibraries/lists/899062
http://courses.csail.mit.edu/6.006/fall07/
http://www.eecs.mit.edu/ug/newcurriculum/6006blurb.pdf

Sample Output

3

