
6.006 Homework Problem Set 4, Part A # 1 – Cycles
INSERT NAME HERE April 5, 2011
Collaborators: INSERT COLLABORATORS HERE

(a) Take the following graph with 3 nodes and 3 edges:

(s, t), (s, v), (v, t). A BFS will discover t twice, because there are two paths to t, but
there is no cycle, because the paths only go in one direction (towards t).

(b) If you see a node u twice during a BFS of an undirected graph, then there are two paths
from s to u. Simply paste those paths together to make the cycle. It’s important that
the graph is undirected, because pasting the two paths together to make a cycle requires
reversing one of the paths.

(c) Run a DFS on G. If you discover a backedge, declare that there is a cycle. Otherwise,
there is no cycle.

If there is a backedge, then it is part of a cycle: Simply take the path currently on the
stack for the DFS, and then follow the backedge, and we have a cycle.

If there is a cycle, then there is a backedge. At some point during the DFS, we will visit
for the first time a node in the cycle, v. Before we finish with v, we will visit every other
node in the cycle, because those nodes are all reachable from v, and none of them have
been visited before. In particular, we will visit the node u which precedes v in the cycle,
and u will have a backedge to v.

We can check for backedges without affecting the asymptotic running time of DFS,
simply by keeping a set of vertices currently on the stack.

(d) An unidrected graph is acyclic (i.e., a forest) if and only if a DFS yields no back edges

(a) if there’s a back edge, there is a cycle.

(b) if there are no back edge, we see there are only tree edges, so the graph is acyclic

Thus, we run DFS, and if we find a back edge, there is a cycle. We see by Theorem B.2
on page 1085 of CLRS, in an acyclic (undirected) forest, |E| ≤ |V | − 1, so the running
time is O(V)

1

6.006 Homework Problem Set 4, Part A # 2 – Bipartite
INSERT NAME HERE April 5, 2011
Collaborators: INSERT COLLABORATORS HERE

We shall model the problem using a graph. Let the guys in the club be vertices of the graph,
and two vertices share an edge if they are enemies. Our goal is to determine if its nodes can
each be assigned a color, either red or blue, such that no red node is adjacent to another red
node, and no blue node is adjacent to another blue node. After such coloring is determined,
we can let the blue nodes become important members, and red nodes become not important
members. In other word, we are trying to decide if the constructed graph is bipartite or not.

Use breadth-first search repeatedly (in case the graph is not connected). Assign the starting
point to be red, those at odd depth from the starting point to be blue, and those at even
depth to be red. When visiting a node and a neighbor has already been visited, check that
they do not have the same color. If they do, return “No assignment possible”. There can be
no other configuration of the graph coloring which allows for a proper assignment because
given only two colors, the colors on opposite ends of an edge must be different so coloring
starting from a single source will always yield the same coloring. Starting at a different
node will yield the same coloring as well because the graph is undirected. If all nodes are
successfully colored, return “Assignment is possible’. This runs in O(V + E), the running
time of BFS.

Argument using odd length cycles: In an odd length cycle, coloring with two alternating
colors from some start node will end with the last node having the same color as the start
node. Thus, any graph containing an odd cycle cannot be bipartite. The above algorithm
uses BFS, so any node colored blue is an odd distance away from the starting point while
any node colored red is an even distance away from the starting point. If an attempt is made
to color a node both colors, this means it is both an odd and even distance from the source
node, for an odd total number of nodes in the cycle passing through it, thus an assignment
is impossible.

2

