
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 1st, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 3

Problem Set 3
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Both Part A and Part B questions are due Monday, March 7th at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in PDF
format using LATEX. Your solution to Part B should be a valid Python file. A template for writing
up solutions in LATEX is available on the course website. Remember, your goal is to communicate.
Full credit will be given only to a correct solution which is described clearly. Convoluted and
obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise
solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea
of the problem.

Part A
Problem 3-1. [25 points] Recurrences

Solve the following recurrences:

(a) [5 points] T (n) = 2T (n
2
) + n + log n

Solution: Using the master method, a = 2, b = 2, f(n) = n + log n = Θ(n). This is
case 2 of the master method since f(n) = Θ(nlog22 log0 n), so T (n) = Θ(n log n)

(b) [5 points] T (n) = 3T (n
4
) +
√
n

Solution: Using the master method, a = 3, b = 4, f(n) =
√
n = Θ(n0.5). This is

case 1 of the master method since f(n) = Θ(nlog43−ε), so T (n) = Θ(nlog43)

(c) [5 points] T (n) = T (n
2
)+T (n

4
)+n2 (Hint: Calculate upper and lower bounds on T (n)

by converting the problem into recurrences you can solve using the Master Theorem.)

Solution: Using the fact that T (n/2) > T (n/4), we can set an upper and lower
bound on what T (n) is using the master method. T (n) < 2T (n/2) + n2 and T (n) >
2T (n/4) +n2. In both cases, f(n) = Θ(nlogba+ε). Using case 3 of the master method,
we can see that T (n) is upper bounded and lower bounded by Θ(n2). Thus, T (n) =
Θ(n2).

Merge sort typically divides an array in half, forming two recursive subproblems, recursively sorts
the two subproblems, and then merges the two solutions. Consider the c-merge-sort algorithm,
which divides the array into c (roughly) equal-length parts, recursively sorts these c subproblems,
and then merges the c solutions. To merge c sorted lists, the algorithm uses a min-heap initialized

2 Problem Set 3

with the first element of each list, and repeatedly removes the minimum element from the heap, ap-
pends that minimum element to the merged list, and then inserts the minimum element’s successor
(from its source list) into the heap, until all the elements are appended to the merged list.

(d) [5 points] Write the recurrence relation for c-merge-sort on a list of n integers. Solve
it to determine the running time for some constant c.

Solution: c-merge-sort would split the original n size problem into c subproblems
of n/c size. Combining the solutions to the subproblems involves making a min-heap
of c elements (O(c) time). Then for each of the n elements to merge, we take the heap
and extract the minimum (O(1) time), replace the minimum element with its source
list’s successor (O(1) time), and then heapify the heap (O(log c) time). Since c is a
constant, heapifying’s runtime of O(log c) is equivalent to O(1). Thus, it takes O(1)
for each of the n elements to merge and consequently O(n) total for each merge. The
total cost of dividing and combining is O(n), giving us the recurrence

T (n) = cT (n/c) + O(n)

Which by case 2 of the master method will give us a runtime of O(n log n) regardless
of what constant c is.

(e) [5 points] What happens to the running time if c is not a constant, but rather some
function of n?

Solution: In this case, we will divide each problem into c(n) subproblems. The
runtime of combining the solutions has the bottlenecks of making a min-heap of c ele-
ments (O(c(n)) time) and heapifying the heap (O(log c(n)) time) n times. Combining
the solutions will take O(c(n) + n log c(n)) time, which is asymptotically larger than
O(n) when c(n) = O(1). The behavior that each problem gets split into the same
number of equally sized subproblems at each recursion is maintained. Since the cost
of combining of the solutions is asymptotically larger, the total runtime will be larger
when we change c from a constant to a function of n.

Problem 3-2. [25 points] d-ary Heaps

In class, we’ve seen binary heaps, where each node has at most two children. A d-ary heap is a
heap in which each non-leaf node (except perhaps one) has exactly d children. For example, this
is a 3-ary (max) heap:

Problem Set 3 3

95

78

61 8 42

56

54 10 7

28

21

(a) [2 points] Suppose that we implement a d-ary heap using an array A, similarly to how
we implement binary heaps. That is, the root is in A[0], its children are in A[1 . . . d],
and so on. How do we implement the PARENT(i) function, which computes the index
of the parent of the ith node, for a d-ary heap?

Solution: Assuming your heap is 0-indexed, PARENT(i) =
⌊
i−1
d

⌋
. It is equivalent to⌈

i
d

⌉
− 1. If your heap is 1-indexed, PARENT(i) =

⌊
i−2
d

⌋
+ 1.

(b) [2 points] Now that there might be more than two children, LEFT and RIGHT are no
longer sufficient. How do we implement the CHILD(i, k) function, which computes
the index of the kth child of the ith node? (0 ≤ k < d)

Solution: Assuming your heap is 0-indexed, CHILD(i, k) = di + k + 1. If your heap
is 1-indexed, CHILD(i, k) = d(i− 1) + k + 2

(c) [5 points] Express, in asymptotic notation, the height of a d-ary heap containing n
elements in terms of n and d.

Solution: The height is Θ(logd n).

(d) [5 points] Give the asymptotic running times (in terms of n and d) of the HEAPIFY

and INCREASE-KEY operations for a d-ary heap containing n elements.

Solution: HEAPIFY runs in Θ(d logd n) time, since it does d element comparisons at
each level of the heap. INCREASE-KEY runs in Θ(logd n), since it does 1 comparison
at each level of the heap.

(e) [6 points] Let’s suppose that when we build our d-ary heap, we choose d based on the
size of the input array, n. What is the height of the resulting heap (in terms of n) if we
choose d = Θ(1)? What if d = Θ(log n)? What about d = Θ(n)?
(Hint: remember that logd n = logn

log d
. This might simplify your expressions a little.)

Solution: Simply plug in the choice of d into the formula for the height h from part
(c):
d height
Θ(1) Θ(log n)

Θ(log n) Θ(logn
log logn

)

Θ(n) Θ(1)

4 Problem Set 3

(f) [5 points] What are the running times of HEAPIFY and INCREASE-KEY for the three
choices of d above? Do the running times increase or decrease when you increase d?
If your program calls HEAPIFY and INCREASE-KEY the same number of times, what
would be your choice for d and why?

Solution: After plugging in the three choices of d above into the formulas from part
(d), the times are:
d HEAPIFY INCREASE-KEY

Θ(1) Θ(log n) Θ(log n)

Θ(log n) Θ((logn)2

log logn
) Θ(logn

log logn
)

Θ(n) Θ(n) Θ(1)

In general, a larger choice for d increases the running time of HEAPIFY (it is propor-
tional to d

logd
), but decreases the running time of INCREASE-KEY (it is proportional

to 1
logd

). If HEAPIFY and INCREASE-KEY are called the same number of times, their
joint running time is proportional to the sum of their individual running times. This
sum is asymptotically smallest (Θ(logn)) when d = Θ(1). (NOTE: d = 1 is a special
case in which a tree is a linked list and all formulas above where d is the base of a
logarithm are invalid. Instead, all operations take O(n) time. This is not efficient, so
we exclude this case.)

Problem Set 3 5

Part B

Problem 3-3. [50 points] Pset Scheduling

Ben Bitdiddle is behind on his problem sets. In fact, he is already late on N different problem sets
(1 ≤ N ≤ 100, 000). Fortunately for Ben, all of his classes accept late homework with a grade
penalty for each day late (unlike 6.006).

Suppose that problem set i, where 1 ≤ i ≤ N , has a penalty of Pi points per day late, and takes
one full day to complete. There is no limit to the number of penalty points Ben can accrue. (Ben’s
penalty adjusted score can become negative.) Ben is required to finish each problem set.

You should implement a function best score(penalties) which takes as input the list of
daily point penalties Pi and returns the minimum number of penalties points it is possible for Ben
to be assigned.

As part of your program, you will need to do some sorting. You should write your own implemen-
tation of heap sort for this problem. Your implementation of heap sort should have the signature
heap sort(list) where list is the list to sort. Your function should sort list in descend-
ing order using the default Python ordering defined by < and >. This means, for instance, that
heap sort([5,1,4,0]) should return [5,4,1,0]. Using this function specification will
allow us to better test your code if you have a bug and give you more partial credit.

Sample Input:
[1,5,2,3]

Sample Output:
21

Sample Explanation:
In the sample above, Ben works on pset #2 on the first day, pset #4 the next day, pset #3 the
third day, and pset #1 the last day. In total, he accrues 5 · 1 + 3 · 2 + 2 · 3 + 1 · 4 = 21 penalty
points.

