
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 1st, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 3

Problem Set 3
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Both Part A and Part B questions are due Monday, March 7th at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in PDF
format using LATEX. Your solution to Part B should be a valid Python file. A template for writing
up solutions in LATEX is available on the course website. Remember, your goal is to communicate.
Full credit will be given only to a correct solution which is described clearly. Convoluted and
obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise
solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea
of the problem.

Part A
Problem 3-1. [25 points] Recurrences
Solve the following recurrences:

(a) [5 points] T (n) = 2T (n
2
) + n + log n

(b) [5 points] T (n) = 3T (n
4
) +
√

n

(c) [5 points] T (n) = T (n
2
)+T (n

4
)+n2 (Hint: Calculate upper and lower bounds on T (n)

by converting the problem into recurrences you can solve using the Master Theorem.)

Merge sort typically divides an array in half, forming two recursive subproblems, recursively sorts
the two subproblems, and then merges the two solutions. Consider the c-merge-sort algorithm,
which divides the array into c (roughly) equal-length parts, recursively sorts these c subproblems,
and then merges the c solutions. To merge c sorted lists, the algorithm uses a min-heap initialized
with the first element of each list, and repeatedly removes the minimum element from the heap, ap-
pends that minimum element to the merged list, and then inserts the minimum element’s successor
(from its source list) into the heap, until all the elements are appended to the merged list.

(d) [5 points] Write the recurrence relation for c-merge-sort on a list of n integers. Solve
it to determine the running time for some constant c.

(e) [5 points] What happens to the running time if c is not a constant, but rather some
function of n?

Problem 3-2. [25 points] d-ary Heaps
In class, we’ve seen binary heaps, where each node has at most two children. A d-ary heap is a
heap in which each non-leaf node (except perhaps one) has exactly d children. For example, this
is a 3-ary (max) heap:



2 Problem Set 3

95

78

61 8 42

56

54 10 7

28

21

(a) [2 points] Suppose that we implement a d-ary heap using an array A, similarly to how
we implement binary heaps. That is, the root is in A[0], its children are in A[1 . . . d],
and so on. How do we implement the PARENT(i) function, which computes the index
of the parent of the ith node, for a d-ary heap?

(b) [2 points] Now that there might be more than two children, LEFT and RIGHT are no
longer sufficient. How do we implement the CHILD(i, k) function, which computes
the index of the kth child of the ith node? (0 ≤ k < d)

(c) [5 points] Express, in asymptotic notation, the height of a d-ary heap containing n
elements in terms of n and d.

(d) [5 points] Give the asymptotic running times (in terms of n and d) of the HEAPIFY

and INCREASE-KEY operations for a d-ary heap containing n elements.

(e) [6 points] Let’s suppose that when we build our d-ary heap, we choose d based on the
size of the input array, n. What is the height of the resulting heap (in terms of n) if we
choose d = Θ(1)? What if d = Θ(log n)? What about d = Θ(n)?
(Hint: remember that logd n = log n

log d
. This might simplify your expressions a little.)

(f) [5 points] What are the running times of HEAPIFY and INCREASE-KEY for the three
choices of d above? Do the running times increase or decrease when you increase d?
If your program calls HEAPIFY and INCREASE-KEY the same number of times, what
would be your choice for d and why?



Problem Set 3 3

Part B

Problem 3-3. [50 points] Pset Scheduling

Ben Bitdiddle is behind on his problem sets. In fact, he is already late on N different problem sets
(1 ≤ N ≤ 100, 000). Fortunately for Ben, all of his classes accept late homework with a grade
penalty for each day late (unlike 6.006).

Suppose that problem set i, where 1 ≤ i ≤ N , has a penalty of Pi points per day late, and takes
one full day to complete. There is no limit to the number of penalty points Ben can accrue. (Ben’s
penalty adjusted score can become negative.) Ben is required to finish each problem set.

You should implement a function best score(penalties) which takes as input the list of
daily point penalties Pi and returns the minimum number of penalties points it is possible for Ben
to be assigned.

As part of your program, you will need to do some sorting. You should write your own implemen-
tation of heap sort for this problem. Your implementation of heap sort should have the signature
heap sort(list) where list is the list to sort. Your function should sort list in descend-
ing order using the default Python ordering defined by < and >. This means, for instance, that
heap sort([5,1,4,0]) should return [5,4,1,0]. Using this function specification will
allow us to better test your code if you have a bug and give you more partial credit.

Sample Input:
[1,5,2,3]

Sample Output:
21

Sample Explanation:
In the sample above, Ben works on pset #2 on the first day, pset #4 the next day, pset #3 the
third day, and pset #1 the last day. In total, he accrues 5 · 1 + 3 · 2 + 2 · 3 + 1 · 4 = 21 penalty
points.


