
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 15, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 2

Problem Set 2
Both theory and programming questions are due Monday, February 28 at 11:59PM.

Solutions should be turned in through the course website. Your solutions to questions that provoke
a written response should be in PDF format and typeset using LATEXẎour solutions to problems
that ask you to write code should be valid Python files which run from the command line. A
template for writing up solutions in LATEX is available on the course website. Remember, your
goal is to communicate. Full credit will be given only to a correct solution which is described
clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct.
Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you
conceptualize the key idea of the problem.

Problem 2-1. [20 points] Hash functions and load

(a) [3 points] Imagine that an algorithm requires us to hash strings containing English
phrases. Knowing that strings are stored as sequences of characters, Alyssa P. Hacker
decides to simply use the sum of those character values (modulo the size of her hash
table) as the string’s hash.
Will the performance of her implementation match the expected value shown in lec-
ture? Argue that it will or provide a compelling reason why it will not (and propose a
solution).

(b) [3 points] Imagine that we plan to hash the addresses of small, in-memory data struc-
tures. After much optimization (and reading over Alyssa’s shoulder), Ben Bitdiddle
manages to get this data struture to fit in 32 bytes (one cache line of the computer
she’s using). He then writes an algorithm that allocates a contiguous block of memory
containing many of these data structures and inserts some of their addresses into a
hash table whose size is some appropriate power of two.
Will the performance of his implementation match the expected value shown in lec-
ture? Argue that it will or provide a compelling reason why it will not (and propose a
solution).

(c) [3 points] Ben then decides that he needs to hash unordered sets of plain integers. He
gives implementing this a try, but something seems to be wrong. His code is given in
setHash. Explain what the problem is and provide an implementation that is a valid
hash function producing a plain integer. (You may not use any built-in Python hash
functions in your solution.)

(d) [5 points] The ability to quantitatively measure the performance of a hash function
will be useful; we’d like to be able to validate our intuition regarding which hash
functions are good and which ones are not.



2 Problem Set 2

In hasheval.py, you’ll find a stub called hashEval. It takes a hash function, a
“hash table size”, and a collection of values and produce some statistics about what
a hash table of the given size using the given function and storing the given values
would look like.
A simple wrapper called printHashEval that pretty-prints your results is included.
The six statistics that your implementation of hashEval should return are listed
above the stub; they are (in order) the load factor, the proportion of nonempty slots,
the number of values that collide with another value, the mean size of the nonempty
slots, the median size of the nonempty slots, and the number of items in the most-filled
slot.
You should also implement randInts, which generates a uniformly-distributed se-
quence of random integers that we can use to experiment with hashEval.

(e) [3 points] A hash function is provided that is based on Python’s own hashing scheme
for integers (that is, the hash is the integer itself, modulo table size). Start with a table
size of 8 and use hashEval to evaluate the provided hash function on a set of 4 values
generated with randInt. Experiment with different table sizes and ratios of slots to
values. Does this strategy seem to work well? What load factor, approximately, can
you reliably achieve? Provide a few statistics to support your conclusion.

(f) [3 points] As you’ve just seen in a practical setting, the simple uniform hashing as-
sumption has two parts; it requires that a particular value have an equal chance of
being placed in any slot (uniformity) and that the slot a particular value is placed in be
unaffected by which slot any other value is placed in (independence). Briefly describe
a situation in which each is violated but the other holds.

Problem 2-2. [25 points] Collision resolution and dynamic resizing

In this problem, we’ll consider two very serious, real-world challenges that face hash table imple-
mentations: collision resolution and dynamic resizing. A simple hash table implementation called
Footable is provided in footable.py. As provided, it cannot dynamically resize itself, and
it will raise an exception if a collision occurs.

(The implementation of Footable uses a list internally, for which lookup is O(n). We’re going
to ignore this–that is, treat it as though it were O(1)–for the purposes of this problem; dictionaries
are so central to the Python way of thinking that it’s not otherwise possible to do what we want
without using them!)

(a) [2 points] If we have a collision resolution strategy, why do we need to consider
dynamically resizing our hash table? It sounds like a lot of work, after all—both for
us and for our computers!

(b) [2 points] What about the other way around? If we’re going to bother dynamically
resizing our hash table, why do we need a collision resolution strategy? Why don’t
we just resize whenever a collision occurs?



Problem Set 2 3

(c) [3 points] One simple method for resolving collisions is linear probing. Implement
this strategy in a subclass named FootableLinear. Provide in a function named
badLinear a test case demonstrating a situation in which this strategy is not good,
and explain what undesirable behavior it produces and why.

(d) [3 points] Another simple method for resolving collisions is chaining. Implement this
strategy in a sublcass named FootableChaining.

(e) [3 points] Implement quadratic probing in a subclass called FootableQuadratic.

(f) [3 points] Implement double hashing in a subclass called FootableDouble.

(g) [3 points] Compare and constrast, in terms of the problems that they can prevent and
the problems that they can cause, the four strategies you’ve implemented. (Say two
things about each method.)

(h) [3 points] Now think about dynamically resizing your hash table. Provide a descrip-
tion of an algorithm that would turn a FooTable of size n into a FooTable of size
n+m. What is the asymptotic time complexity of your algorithm?

(i) [3 points] In lecture, we discussed doubling the size of our hash table. Ivy H. Crimson
begins to implement this (that is, she lets m = n) but stops when it occurs to her that
she might be able to avoid wasting half of the memory the table occupies on empty
space by letting m = k instead, where k is some constant. Does this work? If so,
why do you think we don’t do it? There is a good theoretical reason as well as several
additional practical concerns; a complete answer will touch on both points.

Problem 2-3. [15 points] Python dictionaries

As you should know by now (and you’re probably in trouble if you don’t), Python’s dictionaries
are hash tables. They’re a handy data structure, and you should use them whenever appropriate—
but they’re also heavily used internally! For this reason, their performance is very important to
Python’s overall performance; a correspondingly large amount of work has been done on tuning
their implementation.

(a) [1 points] We’re going to get started by checking out a file from Python’s Subver-
sion repository at svn.python.org. The Python project operates a web frontend
to their version control system, so we’ll be able to do this using a browser. Visit
http://svn.python.org/projects/python/trunk/Objects/dictnotes.txt.
These are actual notes prepared by contributors to the Python project, as they currently
exist in the Python source tree. (Cool! Actually, this document is a fascinating read—
and you should be able to understand most of it.) List the seven different use cases
that have been identified in this document.

(b) [2 points] Let’s examine the “membership testing” use case. Describe in more detail
how this scenario will use hash tables, and what the primary concerns of this use case
will be (in terms of the hash table’s behavior).



4 Problem Set 2

(c) [3 points] If you were to pick a hash function, size, collision resolution strategy, and
so forth (all of the characeristics of a hash table we’ve seen so far) in order to make a
hash table perfectly suited to this use case alone, what would you choose? Why?

(d) [3 points] Some use cases, such as the “global variables” use case, have requirements
that conflict with these. Describe the requirements of this second use case and where
the conflict emerges. Do you have any ideas about how these concerns might be
balanced?

(e) [3 points] Further into the document are a list of five “tunable parameters”–things
that can be changed in the C source code to modify the behavior of the hash table
implementation. Briefly describe how each of these five parameters lines up with the
“tunables” we’ve seen on the theory side of things; or, if it doesn’t, explain why the
item is important practically but not relevant theoretically.

(f) [3 points] How would you adjust each of these tunables to result in the best perfor-
mance for the “membership testing” use case that you examined previously? Briefly
describe and justify your choices (no more than a sentence per tunable).

Problem 2-4. [40 points] Matching DNA sequences

Ben Bitdiddle has recently moved into the Kendall Square area, which is full of biotechnology
companies and their shiny, window-laden office buildings. While mocking their dorky lab coats
makes him feel slightly better about himself, he is secretly jealous, and so he sets out to earn one
of his very own. To pick up the necessary geek cred, he begins experimenting with DNA-matching
technologies.

Ben would like to create mutants to do his bidding, and to get started, he’d like to know how closely
related the creatures he’s collected a number of samples from are. If two sequences contain mostly
the same subsequences in mostly the same places, then they’re likely closely related; if they don’t,
they probably aren’t. (This is, of course, a gross oversimplification.)

For our purposes, we’ll represent a DNA sequence as a string of characters. (These characters will
all be upper-case. You can look at the Wikipedia page on nucleotides for a list of code characters
and their meanings.) These sequences are very long, so comparing subsequences of them quickly
is important. DNA also varies a little bit from individual to individual, so we’ll need the ability to
find inexact matches.

(a) [1 points] In lecture, we mentioned something called a rolling hash. Describe what it
is and what problem it solves. Why is it a better solution to that problem than a normal
hash? Why might it be useful to Ben Bitdiddle in his quest for biotech riches?

(b) [7 points] Propose and describe a rolling hash function that is appropriate to our
situation, and then implement it in the RollingHash class in dnaseq.py.

(c) [5 points] Now we’ll work towards implementing getExactSubmatches, the nu-
cleotide sequence comparison function described above. Let’s start with subsequenceHashes,



Problem Set 2 5

which returns all k-length subsequences and their hashes (and perhaps other informa-
tion, if there’s anything else you might find useful).
Hint: There will likely be many of these; the DNA sequences are tens of millions
of nucleotides long. To avoid keeping them all in memory at once, implement your
function as a generator. See the Python reference materials available online for details
if you aren’t familiar with this important language construct.

(d) [7 points] Another issue you’ll encounter is that of hash collisions. From your work
in problem 2, you should know several ways to resolve collisions (although a simple
approach like chaining is probably a good place to start). Implement Multidict
and verify that your work passes the simple sanity tests provided. You may use the
Python dictionary in your implementation.

(e) [5 points] Now it’s time to implement getExactSubmatches. Ignore the param-
eter m for the time being; we’ll get to that in a moment. Again, implementing this
function as a generator is probably a good idea. (You will probably have many, many
matches–think about the combinatorics of the situation briefly.) As a hint, consider
that much of the work has already been done by Multidict, RollingHash, and
subsequenceHashes. Your solution probably does not need to be very complex.
We’ve provided a simple sanity test (that may stop working once you support m,
depending on how you do so; don’t worry about this). Your solution should be correct
at this point (that is, able to run compareSequences) but it’ll probably be too slow
to be useful. You can try running it on the first portion of two inputs. The .fa files
are just text files; you can use head to siphon a few tens of thousands of lines off into
a different file if you’d like to see some results.

(f) [5 points] The most significant reason why your solution is presently too slow to
be useful is that you are hashing and inserting into your hash table tens of mil-
lions of elements, and then performing tens of millions of lookups into that hash ta-
ble. Implement intervalSubsequenceHashes, which returns the same thing as
subsequenceHashes except that it hashes only one in m subsequences. (A good
implementation will not do more work than is necessary.) Modify your implementa-
tion of getExactSubmatches to honor m only for sequence A. Why should we
still see approximately the same result? Why can’t we further improve performance
by applying this technique to sequence B as well?

(g) [5 points] Run comparisons between the two human samples (paternal and maternal)
and between the paternal sample and each of the animal samples. What do you notice?
Attach and interpret the images that you produce.
As it turns out, all of the samples provided are relatively closely related, but given that
we are only currently plotting exact matches, some will not appear quite as correlated
as they really are. Which samples are these, and why might you expect these samples
to show this result?

(h) [5 points] Ben Bitdiddle feels that some of his mutants will have sufficiently different
genomes that exact matching might not suffice. Consider a single-mismatch variant



6 Problem Set 2

of getExactSubmatches (that is, one that reports a match even if one base pair
is a mismatch). What parts of your implementation would have to change, and what
modifications would you have to make to them? What information would have to be
hashed? Describe (but do not implement) your algorithm.


