
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 1, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 1

Problem Set 1
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Both Part A and Part B questions are due Monday, February 14 at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in
PDF format using LATEX or scanned handwritten solutions. Your solution to Part B should be a
valid Python file which runs from the command line. A template for writing up solutions in LATEX
is available on the course website. Remember, your goal is to communicate. Full credit will be
given only to a correct solution which is described clearly. Convoluted and obtuse descriptions
might receive low marks, even when they are correct. Also, aim for concise solutions, as it will
save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

Part A:

Problem 1-1. [18 points] Asymptotic Growth

For each group of four functions below, rank the functions by increasing order of growth; that is,
find an arrangement g1, g2, g3, g4 of the functions satisfying g1 = O(g2), g2 = O(g3), g3 = O(g4).
(For example, the correct ordering of n, n2, n3, n4 is n, n2, n3, n4.)

(a) [6 points] Group 1:

f1 =
√
n f2 =

(
n

2

)
f3 = 22100000

f4 = log n

(b) [6 points] Group 2:

f1(n) = 1/n f2(n) = log log log n f3(n) = n/ log n f4(n) = n0.99

(c) [6 points] Group 3:

f1(n) = 2n f2(n) = n · 2n/2 f3(n) = log nn f4(n) =
n∑

i=0

i

Problem 1-2. [6 points] Unimodal Maximum

Define an array A[0 . . n − 1] of numbers to be unimodal if there exists a maximum element A[k]
such that



2 Problem Set 1

A[i] > A[i− 1] for all i such that 0 < i ≤ k, and
A[i] < A[i− 1] for all i such that k < i < n

For example, [1, 4, 8, 9, 7, 6, 2] is unimodal, while [1, 3, 5, 4, 1, 2] is not.

Assume that all the numbers in A are distinct.

Devise an efficient algorithm to find the maximum element in a unimodal array A. Prove that your
algorithm runs in O(log n) time.

Problem 1-3. [6 points] (Re)writing History
For next year’s State of the Onion address, President Banach Bahama needs help crafting his
speech so that it’s not too similar to the one he gave this year. He’s been advised that MIT 6.006
students have been taught about document distance and has found this to be a reasonable metric
to use in crafting his new speech. And thus he has turned to you to help advise him in writing his
new speech.

Recall that a document distance of θ = 0 means the speeches are identical and that θ = 90◦ means
they don’t even share a word. Starting with a copy of this year’s speech, Banach wants to know
whether each of the following strategies will improve his speech (i.e., increase θ) or not help at all
(i.e., keep θ the same). He also requires an explanation for each of your answers.

(a) [2 points] Strategy 1: re-arrange the order of the words while somehow keeping it
coherent (or not).

(b) [2 points] Strategy 2: pad the speech with extra words, none of which appeared in his
speech for this year.

(c) [2 points] Strategy 3: remove some number of words from his speech for this year.

Problem 1-4. [20 points] Augmented Binary Search Trees
Classes have started and you are still searching for an “Introduction to Algorithms” textbook. As
you search for textbooks, you decide to use an AVL tree to keep track of the prices you come
across. Besides the standard operations of an AVL tree (e.g., insert(k) and search(k)), you also
want to the tree to support num textbooks in range(a, b), which finds how many textbooks fall
within the price range a to b inclusive. For example, if the set of textbook prices were [6, 9, 16, 3,
5], then num textbooks in range(5, 11) = 3, since the prices 5, 6, and 9 are in the specified range
of [5, 11].

(a) [6 points] Describe an implementation of the num textbooks in range(a, b) opera-
tion on a regular (non-augmented) AVL tree. What is its running time?

If we augment the AVL tree so that each node maintains the size of the subtree rooted at that node
(in addition to a price and pointers to parent and children), we can speed up the num textbooks in
range operation to take O(log n) time.



Problem Set 1 3

(b) [14 points] Describe your implementation of the num textbooks in range(a, b) op-
eration. Argue that it takes O(log n) time.

Part B:

Problem 1-5. [50 points] Peak Finding
Consider an array A[0 . . n− 1] of n integers. Define a peak of A to be an index i with 0 ≤ i < n
such that A[i − 1] ≤ A[i] and A[i] ≥ A[i + 1], where we imagine A[−1] = A[n] = −∞. In
other words, a peak x is greater than or equal to its neighbors in A, where we treat the first and last
elements as having only one neighbor. Note that A might have multiple peaks.

For example, if A = [10, 6, 4, 3, 12, 19, 18], then A has two peaks, 10 and 19.

Note that the absolute maximum of A is always a peak, but it requires Ω(n) time to compute.

(a) [20 points] Write quick find 1d peak(A) to compute a peak of an array
A[0 . . n− 1] of integers in O(log n) time, using the algorithm described in lecture.

Now consider an n×nmatrixB of integers. Define the neighborhood of elementB[i][j] to consist
ofB[i+1][j], B[i−1][j], B[i][j+1], andB[i][j−1]. To properly handle the boundary, we imagine
B[−1][j] = B[i][−1] = B[i][n] = B[n][j] = −∞. Define an element B[i][j] to be a peak of B if
it is greater than or equal to all of its neighbours. Note that the maximum element of B is a peak,
but that requires Ω(n2) time to compute.

(b) [30 points] Write quick find 2d peak(B) to compute a peak of n × n array
B of integers in O(n) time, using the algorithm described in lecture.

For Python coding help, we have provided code skeletons for you to fill in, including a few help-
ful auxiliary routines, and an implementation of the O(n log n) algorithm for 2D peak finding
described in lecture (medium find 2d peak).


