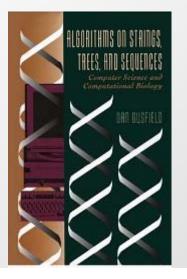
Exact sub-string matching in deterministic linear time O(n+m) Prof. Manolis Kellis

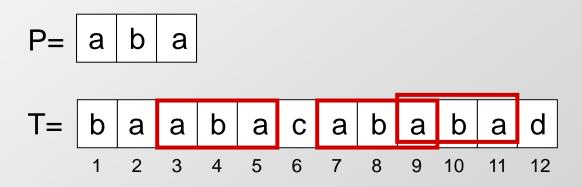
## IMPORTANT NOTE: sub-<u>string</u> matching does not include gaps. Sub-<u>sequence</u> matching, which includes gaps is O(n\*m)



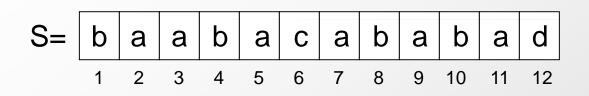
For more information see Dan Guslfied book

### The exact matching problem

- Inputs:
  - a string **P**, called the pattern
  - a longer string T, called the text
- Output:
  - Find all occurrences, if any, of pattern P in text T
- Example



# **Basic string definitions**



- A string S
  - Ordered list of characters
  - Written contiguously from left to write
- A substring S[i..j]
  - all contiguous characters from i to j
  - Example: S[3..7] = abaxa
- A prefix is a substring starting at 1
- A suffix is a substring ending at |S|
- |S| denotes the number of characters in string S

# The naïve string-matching algorithm

- NAÏVE STRING MATCHING
  - $-n \leftarrow length[T]$

1

2

3

4

5

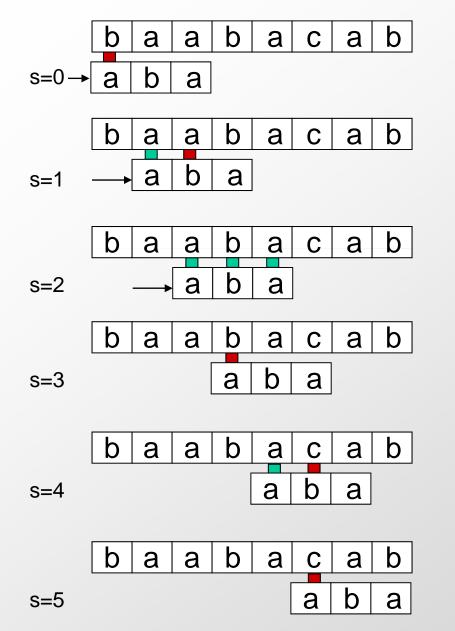
- m← length[P]
- for shift ← 0 to n
  - do if P[1..m] == T[shift+1 .. shift+m]
    - then print "Pattern occurs with shift" shift

```
Running time:
O(n)
→ O(m)
```

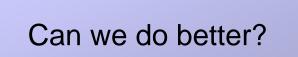
- Where the test operation in line 4:
  - Tests each position in turn
    - If match, continue testing
    - else: stop
- Running time ~ number of comparisons

   number of shifts (with one comparison each)
   number of successful character comparisons

## **Comparisons made with naïve algorithm**

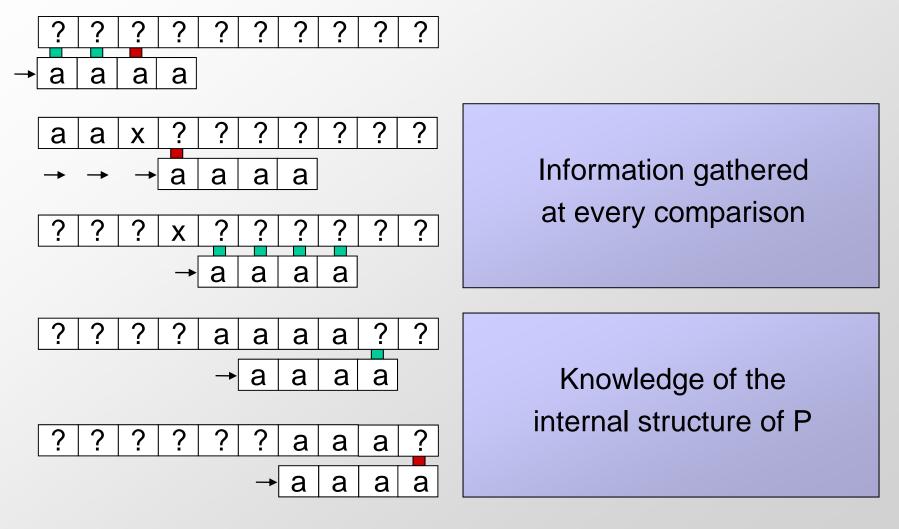


- Worst case running time:
  - Test every position
  - P=aaaa, T=aaaaaaaaaaaa
- Best case running time:
  - Test only first position
  - P=bbbb, T=aaaaaaaaaaaa



# Key insight: make bigger shifts!

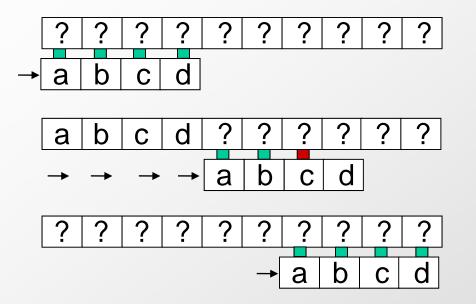
• If all characters in the pattern are the **same**:



Number of comparisons: O(n)

# Key insight: make bigger shifts!

• If all characters in the pattern are different:



Number of comparisons:

- •At most n matching comparisons
- •At most n non-matching comparisons

 $\rightarrow$  Number of comparisons: O(n)

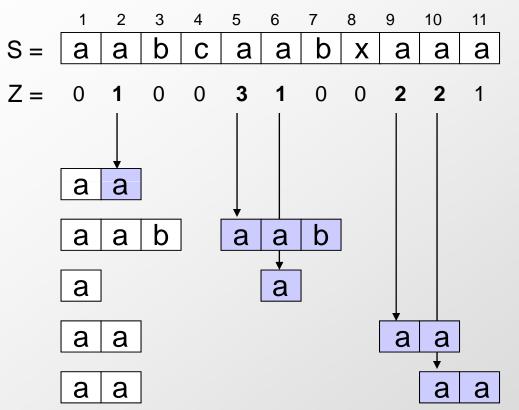
## Key insight: make bigger shifts!

### • Special case:

- If all characters in the pattern are the same: O(n)
- If all characters in the pattern are different: O(n)
- General case:
  - Learn internal redundancy structure of the pattern
  - Pattern pre-processing step
- Methods:
  - Fundamental pre-processing
  - Knuth-Morris-Pratt
  - Finite State Machine

### **Fundamental pre-processing**

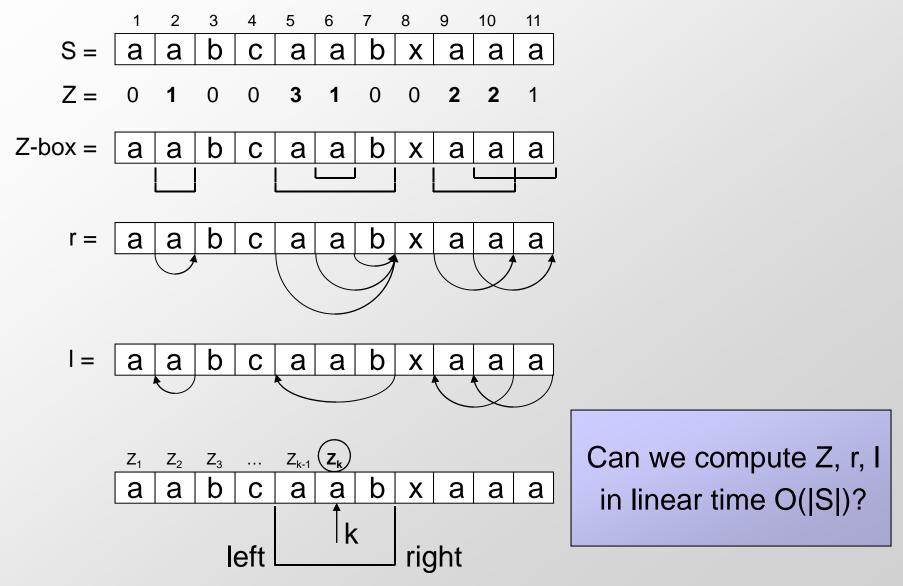
• Learning the redundancy structure of a string S



• Zi = length of longest prefix in common for S[i..] and S (Length of the longest prefix of S[i..] that's also a prefix of S)

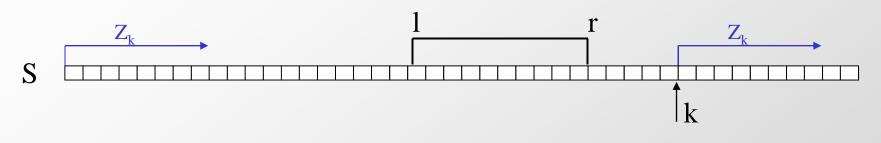
### **Fundamental pre-processing**

Learning the redundancy structure of a string S

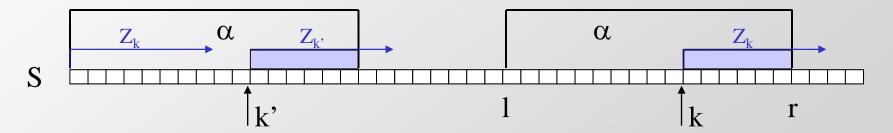


# Computing Z<sub>k</sub> given Z<sub>1</sub>.. Z<sub>k-1</sub>

• Case 1: k is outside a Z-box: simply compute Z<sub>k</sub>



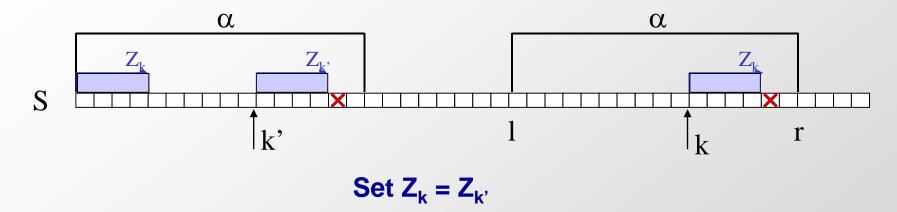
Case 2: k is inside a Z-box: Look up Z<sub>k'</sub>



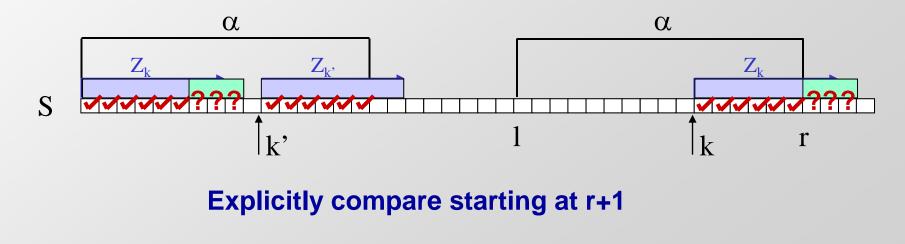
→ Case 2a: Zk' < r-k</li>
 → Case 2b: Zk' >= r-k

# Computing Z<sub>k</sub> given Z<sub>1</sub>.. Z<sub>k-1</sub>





#### Case 2b: Z<sub>k'</sub> >= r-k



# Putting it all together

- FUNDAMENTAL-PREPROCESSING(S):
  - $Z_2$ ,I,r = explicitly compare S[1..] with S[2..]
  - **for** k in 2..n:

if k > r:  $Z_k$ , l, r = explicitly compare S[1..] with S[k..] if k <= r:

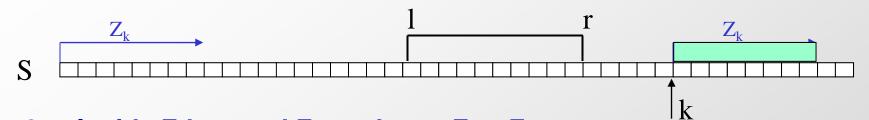
**if**  $Z_{k'} < (r-k)$ :  $Z_k = Z_{k'}$ 

else:

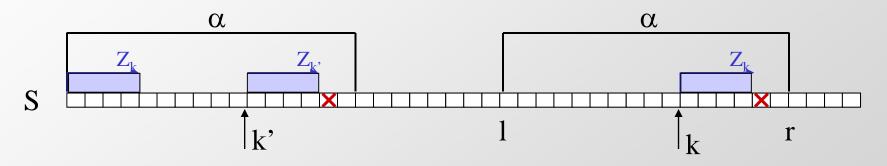
 $Z_k$  = explicitly compare S[r+1..] with S[(r-k)+1..] I = k r = I+Z\_k

## **Correctness of Z computation**

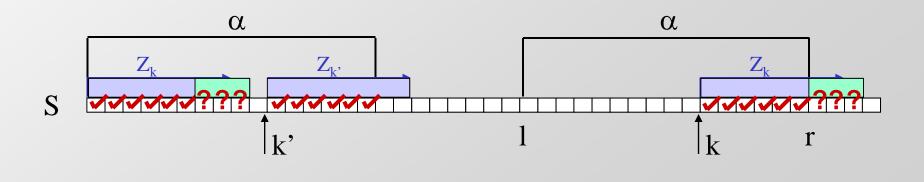
Case 1: k is outside a Z-box: explicitly compute Z<sub>k</sub>



Case 2a: Inside Z-box and  $Z_{k'} < r-k$ : set  $Z_k = Z_{k'}$ 

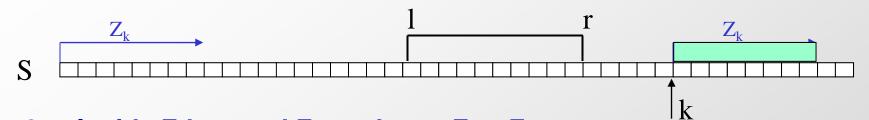


Case 2b: Inside Z-box and  $Z_{k'} \ge r-k$ : explicitly compute starting at r+1

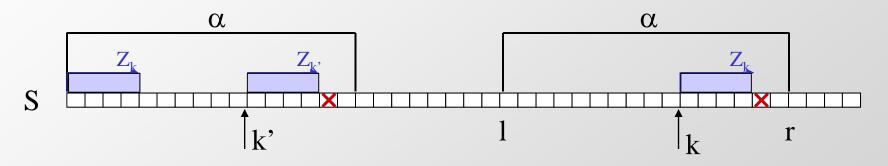


## **Running time of Z computation**

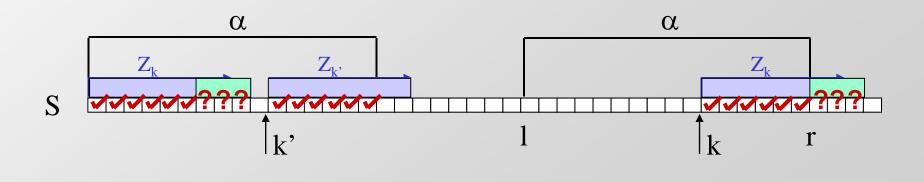
Case 1: k is outside a Z-box: explicitly compute Z<sub>k</sub>



Case 2a: Inside Z-box and  $Z_{k'} < r-k$ : set  $Z_k = Z_{k'}$ 

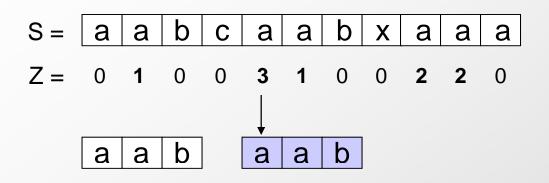


Case 2b: Inside Z-box and  $Z_{k'} \ge r-k$ : explicitly compute starting at r+1



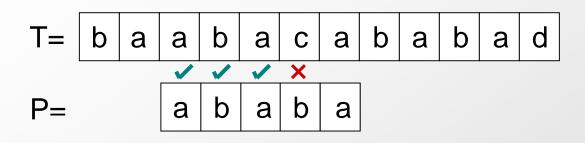
### What's so fundamental about Z?

Learning the redundancy structure of a string S



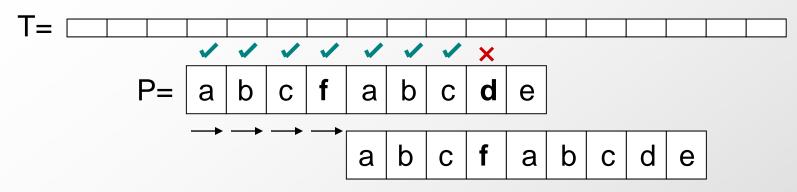
- $Z_i$  = fundamental property of internal redundancy structure
- Most pre-processings can be expressed in terms of Z
  - Length of the longest prefix starting/ending at position i
  - Length of the longest suffix starting/ending at position i

# **Back to string matching**



- Given the fundamental pre-processing of pattern P
  - Compare pattern P to text T
  - Shift P by larger intervals based on values of Z
- Three algorithms based on these ideas
  - Knuth-Morris-Pratt algorithm
  - Boyer-Moore algorithm
  - Z algorithm

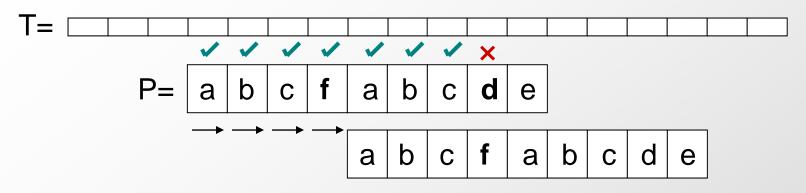
### **Knuth-Morris-Pratt algorithm**



- Pre-processing:
  - Sp<sub>i</sub>(P) = length of longest proper suffix of P[1..i] that matches a prefix of P

- No other than the right-hand-side of the Z-boxes

### **Knuth-Morris-Pratt running time**



- Number of comparisons bounded by characters in T
  - Every comparison starts at text position where last comparison ended
  - Every shift results in at most one extra comparison
  - At most |T| shifts  $\rightarrow$  Running time bounded by  $2^*|T|$

## **Boyer-Moore algorithm**

$$T= \begin{bmatrix} b & a & a & b & x & c & a & b & a & b & a & d \\ P= \begin{bmatrix} a & b & a & b & x \end{bmatrix}$$

- Three fundamental ideas:
  - 1. Right-to-left comparison
  - 2. Alphabet-based shift rule
  - 3. Preprocessing-based shift rule
- Results in:
  - Very good algorithm in practice
  - Rule 2 results in large shifts and sub-linear time
    - for larger alphabets, ex: English text
  - Rule 3 ensures worst-case linear behavior
    - even in small alphabets, ex: DNA sequences

# The Z algorithm

| P+T= | а | b | а | b | а | \$ | b | а | а | b | а | С | а | b | а | b | а | d |  |
|------|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|--|
|------|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|--|

### • The Z algorithm

- Concatenate P + '\$' + T
- Compute fundamental pre-processing O(m+n)
- Report all starting positions *i* for which  $Z_i = |P|$