Exact sub-string matching in deterministic linear time $\mathbf{O}(\mathrm{n}+\mathrm{m})$
 Prof. Manolis Kellis

IMPORTANT NOTE: sub-string matching does not include gaps. Sub-sequence matching, which includes gaps is $\mathrm{O}(\mathrm{n} * \mathrm{~m})$

For more information see Dan Guslfied book

The exact matching problem

- Inputs:
- a string P, called the pattern
- a longer string \boldsymbol{T}, called the text
- Output:
- Find all occurrences, if any, of pattern \boldsymbol{P} in text \boldsymbol{T}
- Example

$$
\begin{aligned}
& \mathrm{P}=\begin{array}{|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{a} \\
\mathrm{~T}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Basic string definitions

$$
\mathrm{S}=\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

- A string S
- Ordered list of characters
- Written contiguously from left to write
- A substring S[i..j]
- all contiguous characters from i to j
- Example: S[3..7] = abaxa
- A prefix is a substring starting at 1
- A suffix is a substring ending at |S|
- $|S|$ denotes the number of characters in string S

The naïve string-matching algorithm

- NAÏVE STRING MATCHING
$-\mathrm{n} \leftarrow$ length[T]
$-\mathrm{m} \leftarrow$ length $[P]$
- for shift $\leftarrow 0$ to n
- do if $P[1 . . m]==T[s h i f t+1$.. shift+m]
- then print "Pattern occurs with shift" shift

$$
\begin{aligned}
& \text { Running time: } \\
& \begin{array}{l}
O(\mathrm{n}) \\
\rightarrow O(\mathrm{~m})
\end{array}
\end{aligned}
$$

- Where the test operation in line 4:
- Tests each position in turn
- If match, continue testing
- else: stop
- Running time ~ number of comparisons
number of shifts (with one comparison each)
+ number of successful character comparisons

Comparisons made with naïve algorithm

$$
\begin{aligned}
& \mathrm{s}=0 \rightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} \\
\hline \mathrm{a} & \mathrm{~b} & \mathrm{a} & & & & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array} \\
& s=1 \longrightarrow \begin{array}{|l|l|l|}
\hline a & b & a \\
\hline
\end{array} \\
& s=2 \quad \begin{array}{|l|l|l|l|l|l|l|l|}
\hline b & a & a & b & a & c & a & b \\
\hline & \rightarrow & a & b & a & & \\
\hline
\end{array}
\end{aligned}
$$

- Worst case running time:
- Test every position
- $\mathrm{P}=$ aaaa, $\mathrm{T}=$ aaaaaaaaaaa
- Best case running time:
- Test only first position
- $P=b b b b, T=a a a a a a a a a a$

Can we do better?

Key insight: make bigger shifts!

- If all characters in the pattern are the same:

a	a	x	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\rightarrow \rightarrow \rightarrow$	a	a	a	a					

$?$	$?$	$?$	$?$	a	a	a	a	$?$	$?$
		$\rightarrow \mathrm{a}$	a	a	a				

$?$	$?$	$?$	$?$	$?$	$?$	a	a	a	?
		\rightarrow	a	a	a	a			

Information gathered at every comparison

Knowledge of the internal structure of P

Number of comparisons: $\mathrm{O}(\mathrm{n})$

Key insight: make bigger shifts!

- If all characters in the pattern are different:

| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $?$ | $?$ | $?$ | $?$ | | | | | |

a	b	c	d	$?$	$?$	$?$	$?$	$?$	$?$

$?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$	
	\rightarrow a
	b

Number of comparisons:
-At most n matching comparisons
-At most n non-matching comparisons
\rightarrow Number of comparisons: O(n)

Key insight: make bigger shifts!

- Special case:
- If all characters in the pattern are the same: $O(n)$
- If all characters in the pattern are different: O(n)
- General case:
- Learn internal redundancy structure of the pattern
- Pattern pre-processing step
- Methods:
- Fundamental pre-processing
- Knuth-Morris-Pratt
- Finite State Machine

Fundamental pre-processing

- Learning the redundancy structure of a string S

- $\mathrm{Zi}=$ length of longest prefix in common for $\mathrm{S}[i .$.$] and \mathrm{S}$ (Length of the longest prefix of S[i..] that's also a prefix of S)

Fundamental pre-processing

- Learning the redundancy structure of a string S

$$
\begin{aligned}
& Z=\begin{array}{lllllllllll}
\mathbf{Z} & \mathbf{1} & 0 & 0 & \mathbf{3} & \mathbf{1} & 0 & 0 & \mathbf{2} & \mathbf{2} & 1
\end{array} \\
& \text { Z-box }= \\
& r=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & a & b & c & a & a & b & x & a & a & a \\
\hline
\end{array} \\
& I=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & a & b & c & a & a & b & x & a & a & a \\
\hline
\end{array}
\end{aligned}
$$

> Can we compute $\mathrm{Z}, \mathrm{r}, \mathrm{I}$ in linear time $\mathrm{O}(|\mathrm{S}|)$?

Computing Z_{k} given $\mathrm{Z}_{1} . . \mathrm{Z}_{\mathrm{k}-1}$

- Case 1: k is outside a Z-box: simply compute Z_{k}

- Case 2: k is inside a Z -box: Look up Z_{k}

Computing Z_{k} given Z_{1}. . $\mathrm{Z}_{\mathrm{k}-1}$

Case 2a: $Z_{k}<r-k$

Set $Z_{k}=Z_{k}$

Case 2b: $\mathrm{Z}_{\mathrm{k}^{\prime}}>=\mathrm{r}-\mathrm{k}$

Explicitly compare starting at $\mathbf{r}+1$

Putting it all together

- FUNDAMENTAL-PREPROCESSING(S):
$Z_{2}, \mathrm{I}, \mathrm{r}=$ explicitly compare $\mathrm{S}[1 .$.$] with \mathrm{S}[2 .$. for k in 2. n :
if $k>r: Z_{k}, l, r=$ explicitly compare $S[1 .$.$] with S[k .$.
if $k<=r$:
if $Z_{k}<(r-k): Z_{k}=Z_{k}$ else:

$$
\begin{aligned}
& Z_{k}=\text { explicitly compare } S[r+1 . .] \text { with } S[(r-k)+1 . .] \\
& I=k \\
& r=I+Z_{k}
\end{aligned}
$$

Correctness of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_{k}

Case 2a: Inside Z-box and $Z_{k^{\prime}}<r$-k: set $Z_{k}=Z_{k^{\prime}}$

Case 2b: Inside Z-box and $Z_{k^{\prime}}>=r$-k: explicitly compute starting at $\mathbf{r + 1}$

Running time of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_{k}

Case 2a: Inside Z-box and $Z_{k^{\prime}}<r$-k: set $Z_{k}=Z_{k^{\prime}}$

Case 2b: Inside Z-box and $Z_{k^{\prime}}>=r$ r-k: explicitly compute starting at $\mathrm{r}+1$

What's so fundamental about Z?

- Learning the redundancy structure of a string S

$$
\begin{aligned}
& \mathrm{S}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\hline
\end{array} \\
& Z=\begin{array}{lllllllllll}
0 & \mathbf{1} & 0 & 0 & \mathbf{3} & \mathbf{1} & 0 & 0 & \mathbf{2} & \mathbf{2} & \mathbf{0}
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline \mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array}
\end{aligned}
$$

- $\mathrm{Z}_{i}=$ fundamental property of internal redundancy structure
- Most pre-processings can be expressed in terms of Z
- Length of the longest prefix starting/ending at position i
- Length of the longest suffix starting/ending at position i

Back to string matching

- Given the fundamental pre-processing of pattern P
- Compare pattern P to text T
- Shift P by larger intervals based on values of Z
- Three algorithms based on these ideas
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithm
- Z algorithm

Knuth-Morris-Pratt algorithm

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{P}=\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{f} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathbf{d} & \mathrm{e} \\
\hline
\end{array} \quad \begin{array}{ll}
\mathrm{l} \\
\end{array}
\end{array}
\end{aligned}
$$

- Pre-processing:
$-S p_{i}(P)=$ length of longest proper suffix of $P[1 . . i]$ that matches a prefix of P

$$
\begin{aligned}
& P=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline a & b & c & \mathbf{f} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathbf{d} & \mathrm{e} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\hline
\end{array}
\end{aligned}
$$

- No other than the right-hand-side of the Z-boxes

Knuth-Morris-Pratt running time

- Number of comparisons bounded by characters in T
- Every comparison starts at text position where last comparison ended
- Every shift results in at most one extra comparison
- At most $|\mathrm{T}|$ shifts \rightarrow Running time bounded by 2*|T|

Boyer-Moore algorithm

$$
\begin{aligned}
& \mathrm{T}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline
\end{array} \\
& \mathrm{P}=\begin{array}{|l|l|l|l|l|}
\hline a & b & a & b & x \\
\hline
\end{array}
\end{aligned}
$$

- Three fundamental ideas:

1. Right-to-left comparison
2. Alphabet-based shift rule
3. Preprocessing-based shift rule

- Results in:
- Very good algorithm in practice
- Rule 2 results in large shifts and sub-linear time
- for larger alphabets, ex: English text
- Rule 3 ensures worst-case linear behavior
- even in small alphabets, ex: DNA sequences

The Z algorithm

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a}+\mathrm{T}= & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathbf{\$} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline
\end{array}
$$

- The Z algorithm
- Concatenate P + '\$’ + T
- Compute fundamental pre-processing $O(m+n)$
- Report all starting positions i for which $Z_{i}=|\mathrm{P}|$

