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IMPORTANT  NOTE: sub-string matching 
does not include gaps. Sub-sequence 

matching which includes gaps is O(n*m)matching, which includes gaps is O(n m)

For more information see Dan Guslfied book



The exact matching problem

• Inputs:• Inputs: 
– a string P, called the pattern
– a longer string T called the texta longer string T, called the text

• Output:
– Find all occurrences, if any, of pattern P in text T, y, p

• Example

a b aP=

b a a b a c a b a b a dT=
1 2 3 4 5 6 7 8 9 10 11 12



Basic string definitions

S

b a a b a c a b a b a dS=
1 2 3 4 5 6 7 8 9 10 11 12

• A string S
– Ordered list of characters

Written contiguously from left to write– Written contiguously from left to write
• A substring S[i..j] 

– all contiguous characters from i to j– all contiguous characters from i to j
– Example:  S[3..7] = abaxa

• A prefix is a substring starting at 1A prefix is a substring starting at 1
• A suffix is a substring ending at |S|
• |S| denotes the number of characters in string S| | g



The naïve string-matching algorithm
• NAÏVE STRING MATCHING• NAÏVE STRING MATCHING

– n  length[T]
– m length[P]

1

2
g [ ]

– for shift  0 to n
• do if P[1..m] == T[shift+1 .. shift+m]

– then print “Pattern occurs with shift” shift

2

3

4

O(n)
O(m)

Running time:

then print Pattern occurs with shift  shift

• Where the test operation in line 4:

5

– Tests each position in turn
• If match, continue testing
• else: stope se stop

• Running time ~ number of comparisons
number of shifts (with one comparison each)

+ number of successful character comparisons



Comparisons made with naïve algorithm

• Worst case running time:b a a b a c a b • Worst case running time: 
– Test every position
– P=aaaa T=aaaaaaaaaaa

b a a b a c a b
a b as=0

b a a b a c a b P aaaa, T aaaaaaaaaaa
• Best case running time:

– Test only first position

a b as=1

b a a b a c a b y p
– P=bbbb, T=aaaaaaaaaaa

b a a b a c a b
a b as=2

b a a b a c a b
a b as=3

b a a b a c a bb a a b a c a b
a b as=4

b a a b a c a b

Can we do better?

b a a b a c a b
a b as=5



Key insight:  make bigger shifts!

• If all characters in the pattern are the same:• If all characters in the pattern are the same:

? ? ? ? ? ? ? ?
a a a a

? ?
a a a a

a a x ? ? ? ? ?
a a a a

? ?
Information gathereda a a a

? ? ? x ? ? ? ?
a a a a

? ?

Information gathered
at every comparison

a a a a

? ? ? ? a a a a
a a a a

? ?
Knowledge of thea a a a

? ? ? ? ? ? a a
a a a a

a ?

Knowledge of the
internal structure of P

a a a a

Number of comparisons:  O(n)



Key insight:  make bigger shifts!

• If all characters in the pattern are different:• If all characters in the pattern are different:
? ? ? ? ? ? ? ?
a b c d

? ?
a b c d

a b c d ? ? ? ?
a b c d

? ?
a b c d

? ? ? ? ? ? ? ?
a b c d

? ?
a b c d

Number of comparisons:
•At most n matching comparisons
•At most n non-matching comparisons

 Number of comparisons:  O(n)



Key insight:  make bigger shifts!

• Special case:• Special case:
– If all characters in the pattern are the same: O(n)
– If all characters in the pattern are different: O(n)If all characters in the pattern are different: O(n)

• General case: 
– Learn internal redundancy structure of the patterny p
– Pattern pre-processing step

• Methods: 
– Fundamental pre-processing
– Knuth-Morris-Pratt
– Finite State Machine



Fundamental pre-processing

• Learning the redundancy structure of a string S

a a b c a a b x a a a
1 2 3 4 5 6 7 8 9 10 11

S =

• Learning the redundancy structure of a string S

a a

1 3 1 2 20 0 0 0 0 1Z =

a a

a a

a a b a a b

a a a a

a a

a a a a

a a a a

• Zi = length of longest prefix in common for S[i..] and S
(Length of the longest prefix of S[i..] that’s also a prefix of S)



Fundamental pre-processing

• Learning the redundancy structure of a string S• Learning the redundancy structure of a string S

a a b c a a b x a a a
1 2 3 4 5 6 7 8 9 10 11

S =

0 1 0 0 3 1 0 0 2 2 1Z =

Z-box = a a b c a a b x a a a

r = a a b c a a b x a a a

l = a a b c a a b x a a a

a a b c a a b x a a a
Can we compute Z, r, l
i li ti O(|S|)?

Z1 Z2 Z3 … Zk-1 Zk

a a b c a a b x a a a
k

left right

in linear time O(|S|)?



Computing Zk given Z1 .. Zk-1

• Case 1:  k is outside a Z-box:  simply compute Zk

l r ZkZk

k
S

ZkZk

 

• Case 2:  k is inside a Z-box:  Look up Zk’

ZZ Z

k’ k
S

l r

 ZkZk Zk’

 Case 2a: Zk’ < r-k
 Case 2b: Zk’ >= r-k



Computing Zk given Z1 .. Zk-1

 
ZZ Z

Case 2a:  Zk’ < r-k

k’ k
S

l r

ZkZk Zk’

Set Zk = Zk’

Case 2b:  Zk’ >= r-k

ZZ Z

 

k’ k
S

l r

ZkZk Zk’

??????

Explicitly compare starting at r+1



Putting it all together

• FUNDAMENTAL PREPROCESSING(S):• FUNDAMENTAL-PREPROCESSING(S):
Z2,l,r = explicitly compare S[1..] with S[2..]
for k in 2 n:for k in 2..n:

if k > r:  Zk,l,r = explicitly compare S[1..] with S[k..]
if k <= r: 

if Z ( k) Z Zif Zk’<(r-k): Zk = Zk’

else: 
Zk = explicitly compare S[r+1..] with S[(r-k)+1..]
l kl = k
r = l+Zk



Correctness of Z computation
Case 1: k is outside a Z-box: explicitly compute ZCase 1:  k is outside a Z-box:  explicitly compute Zk

S

l r ZkZk

k
S

 

Case 2a:  Inside Z-box and Zk’ < r-k: set Zk = Zk’



S
l


ZkZk Zk’

k’ kl r

Case 2b:  Inside Z-box and Zk’ >= r-k: explicitly compute starting at r+1

ZkZk Zk’

 

??????
k’ k

S
l r

??????



Running time of Z computation
Case 1: k is outside a Z-box: explicitly compute ZCase 1:  k is outside a Z-box:  explicitly compute Zk

S

l r ZkZk

k
S

 

Case 2a:  Inside Z-box and Zk’ < r-k: set Zk = Zk’



S
l


ZkZk Zk’

k’ kl r

Case 2b:  Inside Z-box and Zk’ >= r-k: explicitly compute starting at r+1

ZkZk Zk’

 

??????
k’ k

S
l r

??????



What’s so fundamental about Z?

• Learning the redundancy structure of a string S

a a b c a a b x a a aS =

• Learning the redundancy structure of a string S

a a b a a b

1 3 1 2 20 0 0 0 0 0Z =

• Zi = fundamental property of internal redundancy structureZi = fundamental property of internal redundancy structure

• Most pre-processings can be expressed in terms of Z
– Length of the longest prefix starting/ending at position iLength of the longest prefix starting/ending at position i

– Length of the longest suffix starting/ending at position i



Back to string matching 

b a a b a c a b a b a dT=

a b aP= b a

• Given the fundamental pre-processing of pattern P

a b aP b a

Given the fundamental pre processing of pattern P
– Compare pattern P to text T
– Shift P by larger intervals based on values of Z

• Three algorithms based on these ideas
– Knuth-Morris-Pratt algorithm
– Boyer-Moore algorithm
– Z algorithm



Knuth-Morris-Pratt algorithm
T=

a b c f a b c d eP=

f

• Pre-processing:

a b c f a b c d e

Pre processing: 
– Spi(P) = length of longest proper suffix of P[1..i] that 

matches a prefix of P

a b c f a b c d eP=

a b c a b c

– No other than the right-hand-side of the Z-boxes



Knuth-Morris-Pratt running time
T=

a b c f a b c d eP=

f

• Number of comparisons bounded by characters in T

a b c f a b c d e

Number of comparisons bounded by characters in T
– Every comparison starts at text position where last 

comparison ended
– Every shift results in at most one extra comparison
– At most |T| shifts  Running time bounded by 2*|T|



Boyer-Moore algorithm

b a a b x c a b a b a dT=

a b aP= b x

• Three fundamental ideas:
1. Right-to-left comparison
2. Alphabet-based shift rule
3 Preprocessing based shift rule3. Preprocessing-based shift rule

• Results in:
– Very good algorithm in practicee y good a go p ac ce
– Rule 2 results in large shifts and sub-linear time

• for larger alphabets, ex: English text
Rule 3 ensures worst case linear behavior– Rule 3 ensures worst-case linear behavior
• even in small alphabets, ex: DNA sequences



The Z algorithm

b a a b a c a b a b a da b aP+T= b a $

• The Z algorithmThe Z algorithm
– Concatenate P + ‘$’ + T
– Compute fundamental pre-processing O(m+n)
– Report all starting positions i for which Zi=|P|


