### 6.006

## Introduction to Algorithms



Lecture 24: Geometry
Prof. Erik Demaine

## Today

- Computational geometry
- Line-segment intersection
- Sweep-line technique
- Closest pair of points
- Divide \& conquer strikes back!


## Motivation: Collision Detection



## Motivation: Collision Detection


"GTA 4 Carmageddon!" by dot12321

## Line-Segment Intersection

- Input: $n$ line segments in 2D
- Goal: Find the $k$ intersections



## Obvious Algorithm

for every pair ( $\ell, \ell^{\prime}$ ) of line segments: check for intersection
$\} O\left(n^{2}\right)$


## Sweep-Line Technique

- Idea: Sweep a vertical line from left to right
- Maintain intersection of line with input


Sweep-Line Intersections ${ }_{a}^{a} \stackrel{d}{a}{ }_{a}^{d} \stackrel{( }{d} \quad e \stackrel{e}{d} x_{b}^{b} x_{e}^{b x}$ $\left.\begin{array}{lllllllll}a & \stackrel{c}{c} & c & c & c \times & d & b & d & d \\ a & d e \\ b & b & b & b & b & b & f & f & f\end{array}\right)$

## Sweep-Line Events

- Discretize continuous motion of sweep line
- Events when intersection changes
- Segment endpoints
- Intersections


\section*{| Sweep-Line Algorithm Sketch |
| :--- |
| Maintain sweep-line intersection |
|  |}

- Maintain priority queue of (possible) event times ( $=x$ coordinates of sweep line)
- Until queue is empty:
- Delete minimum event time $t$ from priority queue - Update sweep-line intersection from $<t$ to $>t$
- Update possible event times in priority queue
"Discrete-event simulation"


## Intersection Data Structure

- Balanced binary search tree (e.g., AVL tree) to store sorted $(y)$ order of intersections



## Endpoint Events

- For each line segment $\ell=$ ( $\ell$. left, $\ell$.right):
- At $\ell$. left. $x$ : insert $\ell$ (binary search for neighbors then)
- At $\ell$. right. $x$ : delete $\ell$



## Intersection Events?

- How to know when have intersection events?
- This is the whole problem!



## Intersection Events

- Compute when neighboring segments would intersect, if nothing changes meanwhile
- If such an event is next, then it really happens



## Sweep-Line Algorithm

$T=$ empty AVL tree
$Q=$ Build - Heap ( $\{\ell$. left. $x, \ell$. right. $x$ for segment $\ell\}$ )
while $Q$ is not empty:
event $=Q$. delete $-\min ()$
if event is $\ell$. left. $x$ :
insert $\ell$ into $T$ (binary searching with $x=\ell$. left. $x$ ) elif event is $\ell$. right. $x$ :
delete $\ell$ from $T$ elif event is meet $\left(\ell, \ell^{\prime}\right)$ :
report intersection between $\ell$ and $\ell^{\prime}$
swap contents of nodes for $\ell$ and $\ell^{\prime}$ in $T$
for each node $\ell$ changed or neighboring chang do in $T$ :
delete all meet events involving $\ell$ from $Q$
$\operatorname{add} \operatorname{meet}(\ell, T . \operatorname{pred}(\ell)) \& \operatorname{meet}(\ell, T . \operatorname{succ}(\ell))$ to $Q$

## Sweep-Line Analysis

- Running time $=O$ (\# events $\cdot \lg (\#$ events $))$
- Number of endpoint events $=2 n$
- Number of meet events = number $k$ of intersections = size of output
- Running time $=O((n+k) \lg n)$
- Output sensitive algorithm: running time depends on size of output
- Best algorithm runs in $O(n \lg n+k)$ time


## Closest Pair of Points

- Input: $n$ points in 2D
- Goal: find two closest points


## Obvious Algorithm

## $\min$ (distance $(p, q)$ <br> for every pair ( $p, q$ ) of points)

## Divide-and-Conquer Idea

- Initially sort points by $x$ coordinate
- Split points into left half and right half
- Recurse on each half: find closest pair
- return $\min \{c l o s e s t ~ p a i r ~ i n ~ e a c h ~ h a l f, ~$ closest pair between two halves\}


## Closest Pair

## Between Two Halves?

- Let $\delta=\min \{$ closest pair in each half $\}$
- Only interested in pairs with distance $<\delta$
- Restrict to window of width $2 \delta$ around middle



## Closest Pair

## Between Two Halves

- For each left point, interested in points on right within distance $\delta$
- Points on right side can't be within $\delta$ of each other
- So at most three right points to consider for each left point - Ditto for each right point
- Can compute in $O(n)$ time by merging two sorted arrays



## Divide-and-Conquer

presort points by $x$ def closest-pair(points):
middle $=($ points $[n / 2-1]+$ points $[n / 2]) / 2$ $\delta=\min \{$ closest-pair(points[: $n / 2]$ ), closest-pair(points[ $n / 2:])\}$
sort points[points.succ(middle $-\delta$ ): $n / 2$ ] by $y$ sort points $[n / 2$ : points.pred(middle $+\delta$ )] by $y$ merge and find closest pair between two lists return $\min \{\delta$, closest distance from merge $\}$


## Faster Divide-and-Conquer

[Shamos \& Hoey 1975]
presort points by $x$ and $y$, and cross link points def closest-pair(xpoints, ypoints):
middle $=(\operatorname{xpoints}[n / 2-1]+$ xpoints $[n / 2]) / 2$
$\delta=\min \{$ closest-pair(xpoints[: $n / 2], \rightarrow$ ypoints)
closest-pair(xpoints[ $n / 2:], \rightarrow$ ypoints)
xpoints[xpoints.succ(middle $-\delta$ ): $n / 2$ ]
xpoints[ $n / 2$ : xpoints.pred(middle $+\delta$ )]
map to ypoints \& find closest pair between lists $\} O(n)$ return $\min \{\delta$, closest distance from merge $\}$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+O(n) \\
& =O(n \lg n)
\end{aligned}
$$

## Other Computational Geometry Problems

- Convex hull
- Voronoi diagram
- Triangulation
- Point location
- Range searching
- Motion planning
6.850: Geometric Computing


## Mark de Berg Otfried Cheong Marc van Kreveld Mark Overmars



