
6.006
Introduction	to	Algorithms

Lecture	21:	Dynamic	Programming	IV
Prof.	Erik	Demaine



Today
• Piano	fingering
• Platform	video	games
• Structural	dynamic	programming
• Vertex	cover
• Widget	layout



Recall:	What	is
Dynamic	Programming?

• “Controlled”	brute	force	/	exhaustive	search
• Key	ideas:

– Subproblems:	like	original	problem,	but	smaller
• Write	solution	to	one	subproblem in	terms	of	
solutions	to	smaller	subproblems

– Memoization:	remember	the	solution	to	
subproblems we’ve	already	solved,	and	re‐use
• Avoid	exponentials

– Guessing: if	you	don’t	know	something,	guess	it!	
(try	all	possibilities)



Recall:
How	to	Dynamic	Program

Five	easy	steps!
1. Define	subproblems
2. Guess something	(part	of	solution)
3. Relate	subproblem solutions	(recurrence)
4. Recurse and	memoize (top	down)

or Build	DP	table	bottom	up
5. Solve original	problem	via	subproblems

(usually	easy)



Recall: How	to	Analyze
Dynamic	Programs

Five	easy	steps!
1. Define	subproblems count	#	subproblems
2. Guess	something count	#	choices
3. Relate	subproblem solutions

analyze	time	per	subproblem
4. DP	running	time =	#	subproblems

time	per	subproblem
5. Sometimes	additional	running	time

to	solve	original	problem



Two	Kinds	of	Guessing
1. Within	a	subproblem

– Crazy	Eights:	previous	card	in	trick
– Sequence	alignment:	align/drop	one	character
– Bellman‐Ford:	previous	edge	in	path
– Floyd‐Warshall:	use	vertex	 ?
– Parenthesization:	last	multiplication
– Knapsack:	include	item	 ?
– Tetris	training:	how	to	place	piece	

2. Using	additional	subproblems
– Knapsack:	how	much	space	left	in	knapsack
– Tetris	training:	current	board	configuration



Piano	Fingering

photo	by	Brian	Richardson	(seriousbri),	2009
http://www.flickr.com/photos/seriousbri/4148739768/



Piano	Fingering

images	from	http://www.piano‐lessons‐central.com/music‐notation/how‐to‐read‐music/



Piano	Fingering
[Parncutt,	Sloboda,	Clarke,	Raekallio,	Desain 1997;

Hart,	Bosch,	Tsai	2000;	Al	Kasimi,	Nichols,	Raphael	2007]

• Given	musical	piece	to	play
– Say,	sequence	of	single	notes	with	right	hand
– (Can	extend	to	both	hands,	multiple	notes,	etc.)

• Given	metric	 of	difficulty going	
from	finger	 on	note	 to	finger	 on	note	
– Crossing:	High	if	 and	
– Stretch:	High	if	
– Legato: if	
– Weak	finger:	High	if	
– :	High	if	
– …

References:
http://www.jstor.org/pss/40285730

http://www.jstor.org/pss/10.1525/mp.2
001.18.4.505

http://www.cse.unsw.edu.au/~cs9024/0
5s2/ass/ass01/fingering.pdf

http://ismir2007.ismir.net/posters/ISMI
R2007_p355_kasimi_poster.pdf



Piano	Fingering	DP
1. Subproblems: for	 :

minimum	difficulty	possible	for	note
2. Guess: finger	 for	note
3. Recurrence:

• How	to	know	fingering	for	next	note	 ?
• Guess!



Piano	Fingering	DP
1. Subproblems: for	 &	finger	 :

minimum	difficulty	possible	for	note
starting	on	finger	

2. Guess: finger	 for	note
3. Recurrence:

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	



http://media.ign.com/games/image/article/833/833615/ign‐presents‐the‐history‐of‐super‐mario‐bros‐20071108044755327.gif
http://images.inquisitr.com/wp‐content/2011/03/super‐mario‐bros‐modern‐sound.jpg



Platform	Video	Games
• Given	entire	level:	objects,	enemies,	etc.
• Anything	outside	 screen	is	reset
• Configuration =	screen	state,	score,	velocity,	…
• Given	transition	function	for	each	time	step

ᇱ

– Movement,	enemies,	…
• Goal: Maximize	score
subject	to	surviving
and	reaching	goal



Platform	Video	Game	DP
1. Subproblems: for	configuration	 :

best	possible	score	starting	from	
2. Guess: which	action	to	take	(if	any)
3. Recurrence:

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	



Cycles	in	Subproblems
• ଵ ଵ ଵ ଶ ଶ ଶ ଷ
might	lead	to	cycles

• In	this	problem,	never	helps	to	cycle
– captures	entire	state,
including	score

• So	mark	subproblem
at	start,	and	if	cycle,
ignore	that	subproblem

• OR: SMB	timer	in	 ,	so
actually	no	cycles

memo	=	{}
def mario :
if	 not	in	memo:

memo
memo

return	memo



Structural	Dynamic	
Programming

• Follow	a	combinatorial	structure	other	than	
a	sequence	/	a	few	sequences
– Like	structural	vs.	regular	induction

• Main	example: Tree	structure
• Useful	subproblems:
for	every	vertex	 ,
subtree	rooted	at	



Vertex	Cover
• Given	an	undirected	graph	
• Find	a	minimum‐cardinality	set	 of	vertices	
containing	at	least	one	endpoint	of	every	edge
– Equivalently,	find	a	minimum	set	of	guards	for	a	
building	of	corridors,	or	(unaligned)	streets	in	city

Example:



Vertex	Cover	Algorithms
• Extremely	unlikely	to	have	
a	polynomial‐time	
algorithm,	even	for	planar	
graphs	(see	Lecture	25)

• But	polynomially solvable	
on	trees,	using	dynamic	
programming



Vertex	Cover	in	Tree	DP
1. Subproblems: for	 :	size	of	smallest

vertex	cover	in	subtree rooted	at	
2. Guess: is	 in	the	cover?

– YES:
• Cover	children	edges
• Left	with	children	subtrees

– NO:
• All	children	must	be	in	cover
• Left	with	grandchildren

subtrees



Vertex	Cover	in	Tree	DP
1. Subproblems: for	 :	size	of	smallest

vertex	cover	in	subtree rooted	at	
2. Guess: is	 in	the	cover?
3. Recurrence:

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	



Improved
Vertex	Cover	in	Tree	DP

1. Subproblems: for	 &	 :
size	of	smallest	vertex	cover	 in	subtree rooted	at	
such	that	 (unconstrained	if	 )

2. Guess: Does	 ?
3. Recurrence:

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	



Widget	Layout
• Given	a	hierarchy	of	widgets
• Leafwidget	=	button,	image,	…

– List	of	possible	rectangular	sizes
• Internalwidget	=
rectangular	container
– Can	join	children
horizontally	or	vertically

• Goal: Fit	into	a	given
rectangular	screen

http://lin‐kuei.blogspot.com/2010/12/android‐app‐menu‐widgets‐and‐site‐map.html



Widget	Layout	DP
1. Subproblems: for	 &	 :

minimum	 such	that	widget	 fits	into	
2. Guess: Leaf	 : Which	size	to	use?

Internal	 : Horizontal	or	vertical?
3. Recurrence:

ᇱ ᇱ ᇱ ᇱ



Horizontal	Layout	DP
1. Subproblems: for	 ,	 ,	

:
minimum	 such	that	horizontal	layout	of

fits	into	 rectangle
2. Guess: Width	 ᇱ of	child	
3. Recurrence:

ᇱ ᇱ
ᇱ

4. DP	time =	#	subproblems time/subproblem



Widget	Layout	DP
1. Subproblems: for	 &	 :

minimum	 such	that	widget	 fits	into	
2. Guess: Leaf	 : Which	size	to	use?

Internal	 : Horizontal	or	vertical?
3. Recurrence:

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	



Widget	Layout	Summary
• Two	“levels”	of	dynamic	programming

1. Optimal	height	for	given	width
of	subtree rooted	at	

2. Optimal	layout	(partitioning)	of	children
into	horizontal	arrangement

• Really	just	one	bigger	dynamic	program
• Pseudopolynomial running	time:

ଶ ଶ


