6.006
Introduction to Algorithms

RONALD L. RIVEST
CLIFFORD STEIN
&

ALGORITHMS

Lecture 21: Dynamic Programming IV

Prof. Erik Demaine

Today

Piano fingering

Platform video games

Structural dynamic programming
Vertex cover

Widget layout

Recall: Whatis

Dynamic Programming?
 “Controlled” brute force / exhaustive search

e Key ideas:

— Subproblems: like original prol

e Write solution to one subprol

blem, but smaller
blem in terms of

solutions to smaller subprob!

ems ’ac(ycﬁfc

— Memoization: remember the solution to
subproblems we've already solved, and re-use

e Avoid exponentials

— Guessing: if you don't know something, guess it!

(try all possibilities)

Recall:
How to Dynamic Program

Five easy steps!

1. Define subproblems

2. Guess something (part of solution)

3. Relate subproblem solutions (recurrence)
4

. Recurse and memoize (top down)
or Build DP table bottom up

5. Solve original problem via subproblems
(usually easy)

Recall: How to Analyze
Dynamic Programs

Five easy steps!

1. Define subproblems count # subproblems
2. Guess something count # choices

3. Relate subproblem solutions

analyze time per subproblem
—|

-

4.\DP running time = # subproblems
- time per subproblem |

5. Sometimes additional running time
to solve original problem

Two Kinds of Guessing
1. Within a subproblem

— Crazy Eights: previous card in trick

— Sequence alignment: align/drop one character
— Bellman-Ford: previous edge in path

— Floyd-Warshall: use vertex k?

— Parenthesization: last multiplication

— Knapsack: include item i?

— Tetris training: how to place piece i

2. Using additional subproblems
— Knapsack: how much space left in knapsack
— Tetris training: current board configuration

Piano Fing

flickr.com /photos/se

Piano Fingering

Ludwig van Beethoven

i J,g,ivp
OO

Poco Moto

[i=zz === ==r==nr-=
O R o —— =

g

. Q0. !
24 e
= 500
39 D3
4 O o oQ 4
0 -\ (-1 @ 5

001
1
<
X

L.H.

Numbeiring lor
Right Hand

Numbering for
Laft. Hand

images from http://www.piano-lessons-central.com/music-notation/how-to-read-music/

Piano Fingering
[Parncutt, Sloboda, Clarke, Raekallio, Desain 1997;
Hart, Bosch, Tsai 2000; Al Kasimi, Nichols, Raphael 2007]

e Given musical piece to play
— Say, sequence of single notes with right hand
— (Can extend to both hands, multiple notes, etc.)
e Given metric d(f,p, g,q) of difficulty going
from finger f on note p to finger g on note g
— Crossing: Highif1 < f < gandp > g
— Stretch: High if p < ¢g

— Legato: w0 if f = g References:

httD://www.istonorg/nss/40285730
—_ Weak flnger: ngh lfg E {4’ 5} httD.//www.lsggli?lrgl/llt?;z/sl0.1525/mo.2

http: //www.cse.unsw.edu.au/~cs9024/0

—_ 3 < 4-: ngh lf {f’ g} — {3’ 4} 5s2/ass/ass01/fingering.pdf

http://ismir2007.ismir.net/posters/ISMI
R2007 p355 kasimi poster.pdf

Piano Fingering DP

1. Subproblems: forl <i < n:
minimum difficulty possible for note|i: |

2. Guess: finger f for note|i]

3. Recurrence: P(i) = min(P(i + 1) +
d(noteli], f, note|i + 1],---727-.-)
for f in fingers)

 How to know fingering for next notei + 17
* Guess!

Piano Fingering DP

minimum difficulty possible for note[i: |
starting on finger f

Guess: finger g for note|i + 1] % F choices
Recurrence: P(i,f) = min(P(i+1,g9) +
OCF)

Subproblems: for 1 < i < n & finger f: % -
n

d(noteli], f,noteli + 1], g9)
for g in fingers)

DP time = # subproblems - tlme/subproblem
——— '~ ~/a
ntE . O(F) O(nF)

Original problem = min(P(1, f) for f in fingers)

milisas MW IHTENBO

L= p— —
F ¢

r—i r— 1 — | |

http //1mages 1nqu151trcom/wp content/2011/03/super marlo bros modern sound]pg

Platform Video Games

Given entire level: objects, enemies, etc.
Anything outside w X h screen is reset

Configuration = screen state, score, velocity, ...

Given transition function for each time step
d: (config, action) ~ config’

— Movement, enemies, ... e

o ‘supen
Goal: Maximize score MARIO nnns

migas WI HTEHDI:I

subject to surviving
and reaching goal

Platform Video Game DP
Cm\.‘(’tgs.
. Subproblems: for configuration C:{ = (4 wih
best possible score starting from C % n-m-§-V

. Guess: which action to take (if any) %O(l)

. Recurrence:
P(C) = max(P(5(C,A)) for Ain actions)}o(i)
P(goal C) = C.score; P(dead C) = —

. DP time = # subproblems,- time/subproblem
O(l)wk'n-m-S‘V . 0(1) — (Pseudch
remi

. Original problem = P(init) _ w,kga@(msv})

Cycles in Subproblems

Cl - 5(C1;A1) — CZ — 5(62"42) — C3 — e
might lead to cycles

In this problem, never helps to cycle

— C captures entire state, |memo = {}
including score def mario(C):

So mark subproblem if C not in memo:
at start, and if cycle, memo[C] = —o

ignore that subproblem mer;n;[ig](;cm Z%

OR: SMB timer in C, so for A in actions)
actually no cycles return memo|C]

Structural Dynamic
Programming

e Follow a combinatorial structure other than
a sequence / a few sequences

— Like structural vs. regular induction

 Main example: Tree structure

e Useful subproblems:
for every vertex v,
subtree rooted at v

Vertex Cover

e Given an undirected graph ¢ = (V, E)

e Find a minimume-cardinality set S of vertices
containing at least one endpoint of every edge

— Equivalently, find a minimum set of guards for a
building of corridors, or (unaligned) streets in city

Example:

Vertex Cover Algorithms

e Extremely unlikely to have
a polynomial-time
algorithm, even for planar
graphs (see Lecture 25)

e But polynomially solvable
on trees, using dynamic
programming

Vertex Cover in Tree DP

. Rost Ha tree orbifm rz‘@.
Subproblems: for v € V: size of smallest

vertex cover in subtree rooted at v

. Guess: is v in the cover?
— YES:
e Cover children edges
o Left with children subtrees
— NO:

e All children must be in cover

e Left with grandchildren
subtrees

Vertex Cover in Tree DP

1. Subproblems: for v € V: size of smallest } IV'
vertex cover in subtree rooted at v

2. Guess: is v in the cover? }, d guesses

3. Recurrence: V(v) = min{
Yes: 1+ sum(V (c) for ¢ in v. children),
nJo : len(v. children) +

sum(V (g) for c in v. children

for g in c. children)} — (V)

4. DP time = # subproblems - time/subproblem
W——’

V) oWV) = Q3

5. Original problem =V actualls, (V) beca
& p veygov(\)sa fwee: Pan)m f&m

Improved

Vertex Cover in Tree DP 5y

1. Subproblems: forv eV &y € {YES,NO, MAYBE}:J
size of smallest vertex cover S in subtree rooted at v
such that [v € §?]| =y (unconstrained if y = MAYBE)

2. Guess: Does MAYBE = YES or NO? £<a choices

3. Recurrence:
V (v, MAYBE) = min{V (v, YES),V(v,NO)} — O(1)
V(v,YES) = 14+ sum(V(c, MAYBE) for c in v. children)
V(v,NO) = sum(V (¢, YES) for ¢ in v. children) —),
= d«r&m(v)

4. DP time = # subproblems,- time/subproblem
& 3 - F¥Ildany =Q(V)
5. Original problem = V(root, MAYBE)

Widget Layout

e Given a hierarchy of widgets T

100 Cumbedand St Toronto, ONMSR 1A6

e Leaf widget = button, image, ...

— List of possible rectangular sizes |

e Internal widget = P
rectangular container

Can join children

A horizontally or vertically

e Goal: Fitinto a given

rectangular screen | B T e || S A

A

http://lin-kuei.blogspot.com/2010/12/android-app-menu-widgets-and-site-map.html

Widget Layout DP

<>

1. Subproblems: forv eV &0<w < W:
minimum h such that widget v fits intow X h

2. Guess: Leaf v: Which size to use?
Internal v: Horizontal or vertical?

3. Recurrence:
L(leafv,w) =
min(h' for (W', h") in v.sizes if w' < w)
L(internal v,w) =
min {sum(L(c,w) for c in v. child),
Hwv,w,1)}

Horizontal Layout DP L
W Jy(v)
. Subproblems: forveV,0<w < W, § e ,E,
1 <i < len(v. children):
minimum h such that horizontal layout of
v.child[i:] fits into w X h rectangle

. Guess: Width 0 < w' < W of childi §W choces

. Recurrence: H(v,w,i) = min(

max{L(v.child[i], w"), Hv,w —w',i + 1)} 0
forl <w' <w)

. DP time = # subproblems - time/subproblem
W-(E] - 0w) = O(w?

5.

\ 4

Widget Layout DP

Subproblems: forv eV &0 <w < W: =W
minimum h such that widget v fits intow X h

Guess: Leaf v: Which size to use? deg(v)
Internal v: Horizontal or vertical? &
Recurrence:
| L(leaf v,w) = ---for---in v. sizes - }0@9@
L(internal v,w) = --- for---in v. child -
DP time = # subproblems - time/subproblem
2' W J%(v)) = qWE>

Original problem S (root W)<H

Widget Layout Summary

 Two “levels” of dynamic programming

1. Optimal height for given width
of subtree rooted at v -

2. Optimal layout (partitioning) of children I—E—I
into horizontal arrangement l I

e Really just one bigger dynamic program

 Pseudopolynomial running time:
O(W?E + WE) = O(W?2E)

