6.006- Introduction to Algorithms
Lecture 13

Dynamic Programming |

Prof. Manolis Kellis
CLRS 15.3, 15.4

Course VI - 6.006 — Module VI = This is it

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro Ps1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxatigeol=arithoae
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths II: Bellman-Ford, DAGs 15 |Shortest Dyn amic
Etj;iahg.c;nuj/j/llo 9 I:j ipr 05 16| Shortest PalthslIII. Dijkstra 16 |Speeding Prog rammin g
: pr07 |17] Graph applications, Genome Assembly 17|Euler To
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19] DP Il: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr 21 | 20| DP IlI: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21 PhonEeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24 |Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26] Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Dynamic Programming

Optimization technique, widely applicable

» Optimal substructure »Overlapping subproblems
Today: Simple examples, alignment

— Simple examples: Fibonacci, Crazy Eights

— Alignment: Edit distance, molecular evolution
Thursday: More DP

— Alignment: Bound, Linear Space, Affine Gaps

— Back to paths: All Pairs Shortest Paths DP1,DP2
Next week:

— Knapsack (shopping cart) problem

— Text Justification

— Structured DP: Vertex Cover on trees, phylogeny

Today: Dynamic programming

Fibonacci numbers
— Top-down vs. bottom-up

Principles of Dynamic programming
— Optimal sub-structure, repeated subproblems

Crazy Eights

— One-dimensional optimization

Sequence alignment
— Two-dimensional optimization

1. Fibonacci Computation

(not really an optimization problem,
but similar intuition applies)

A simple introduction to Dynamic Programming

95

 Fibonacci numbers

Fibonacci numbers are ubiquitous in nature

N/ SN VNS s

: | |
3 z 1 \L

sl

MH'-JVH?
Rabbits per generation Leaves per height

\\LALy R AL

bbbbb

Romanesque spirals Nautilus size Coneflower spirals Leaf ordering

Computing Fibonacci numbers: Top down

« Fibonacci numbers are defined recursively:
— Python code

def fibonacci(n):
if n==1 or n==2: return 1
return fibonacci(n-1) + fibonacci (n-2)

« Goal: Compute nth Fibonacci number.

— F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)

- 1,1,2,3,5,8,13,21,34,55,89,144,233,377,...
* Analysis:

— T(n)=T(n-1) + T(n-2) = (...) = O(2")

fb(0) fib(1)

R0 RB(L) RBD) mBELY EB(D) RB(1) EB(1Y

Fb(0) Ab(1) fib(1)

Computing Fibonacci numbers: Bottom up

Top-down approach
— Python code

def fibonacci(n):

fib table[l] =1
fib table[2] =1
for i in range(3,n+l):
fib table[i] = fib table[i-1]+fib table[i-2]
return fib table[n]

— Analysis: T(n) = O(n)

I Ab(2)

fib_table
F[1] | 1
FI2] | 1
FI3] | 2
F[4] | 3
FI5] | 5
F[6] | 8
F[7] | 13
F[8] | 21
F[9] | 34
F[10] | 55
F[11] | 89
F[12] | ?

fb(D) (1) fb1) fib2) b1 fib(2) fib2)

FB(D) AB(1) RO ALY ABIDY AR(1) RB(L)

\/

fb3) fib(3)

fib(4)

Lessons from iterative Fibonacci algorithm

e] ¢ What did the iterative solution do?

F[1] | 1 — Reveal identical sub-problems

Fl2] | 1 — Order computation to enable result reuse

P51 | 2 — Systematically filled-in table of results

F[4] | 3 .

el — Expressed larger problems from their subparts
1 | 8 | © Ordering of computations matters

F[7] | 13 — Nalve top-down approach very slow

A [=1 » results of smaller problems not available

F[9] | 34
= * repeated work

F[10] | 55
F[11] | 89 > — Systematic bottom-up approach successful

F[12] | 2 « Systematically solve each sub-problem

* Fill-in table of sub-problem results in order.

« Look up solutions instead of recomputing

Dynamic Programming in Theory

* Hallmarks of Dynamic Programming

— Optimal substructure: Optimal solution to problem
(instance) contains optimal solutions to sub-problems

— Overlapping subproblems: Limited number of distinct
subproblems, repeated many many times

« Typically for optimization problems (unlike Fib example)
— Optimal choice made locally: max(subsolution score)
— Score is typically added through the search space
— Traceback common, find optimal path from indiv. choices

« Middle of the road in range of difficulty
— Easier: greedy choice possible at each step

— DynProg: requires a traceback to find that optimal path
— Harder: no opt. substr., e.g. subproblem dependencies

Hallmarks of optimization problems

Greedy algorithms

S)

1. Optimal substructure
An optimal solution to a problem (instance)
contains optimal solutions to subproblems.

o) C

2. Overlapping subproblems
A recursive solution contains a ““small’® number
of distinct subproblems repeated many times.

Q)

o) C

3. Greedy choice property
Locally optimal choices lead
to globally optimal solution

J

Dynamic Programming in Practice

e Setting up dynamic programming

1.
2.

4.
S.

Find ‘matrix’ parameterization (# dimensions, variables)

Make sure sub-problem space is finite! (not exponential)
« |f not all subproblems are used, better off using memoization
« If reuse not extensive, perhaps DynProg is not right solution!

Traversal order: sub-results ready when you need them

« Computation order matters! (bottom-up, but not always
obvious)

Recursion formula: larger problems = F(subparts)

Remember choices: typically F() includes min() or max()
* Need representation for storing pointers, is this polynomial !

* Then start computing

1.
2.

Systematically fill in table of results, find optimal score
Trace-back from optimal score, find optimal solution

2. Crazy Eights

One-dimensional Optimization

Crazy 8s

* Input: a sequence of cards c[0]...c[n-1].
" E.g., 7% 79 K& K& 8Y ..
* Goal: find the longest “trlck subsequence”™
c[i,]...c[l], where I, <1, <...<I,.
* For 1t to be a trick subsequence, 1t must be that:
V'], c[li] and c[I;, ;]| “match” i.e.

* they elther have the same rank,
* or the same suit
* or on¢ of them 1s an &
* in this case, we write: c[I;] ~ c[I;]
" E.g., 7% K& K& 89 1s the longest such subsequence
in the above example

Crazy8: Example computation

-mmmm

cli] 7%
max 1 2 2 3 4
score|i]
&/ /\/ N
Rules:
e sSame rank

e Or same suit
eOroneis an 8

Dynamic Programming for Crazy Eights

Setting up dynamic programming

1. Find ‘'matrix’ parameterization
» One-dimensional array

2. Make sure sub-problem space is finite! (not exponential)
» Indeed, just one-dimensional array

3. Traversal order: sub-results ready when you need them
» Left-to-right ensures this

4. Recursion formula: larger problems = F(subparts)
» Scan entire sub-array completed so far O(n) each step

5. Remember choices: typically F() includes min() or max()
» Pointer back to the entry that gave us optimal choice

Then start computing
1. Systematically fill in table of results, find optimal score

2. Trace-back from optimal score, find optimal solution

Crazy8: Max Score Algorithm

Let trick(l) be the length of the longest trick
subsequence that ends at card c/i]

Question: How can I relate value of trick(l) with
the values of trick(1),... trick(i-1)?

Recursive formula:

trick(i) = 1+ max;; .i; - iy trick())

Maximum trick length:

max; trick(1l)

Implementations

Recursive

* memo = { }
o trick(l):
* if I in memo: return memo|i]
» else if I=1: return 1
" ¢lse
o f:= 14tmax;g ;- o trick()
* memol[l] :=f
e return f

o call trick(n)
e return maximum value 1n memo

Implementations (cont.)

Iterative

memo = { }
for1=1ton

memo[l]= 1+max; ;. . Memo(]]
return maximum value in memo

Runtime: O(n?)

Dynamic Programming

e DP = Recursion + Memoization

e DP works when:

mMoOorcover.. ..

3. Sequence Alignment

Two-dimensional optimization

Genomes change over time

begin A|C|IG|IT|C|IA|T|C|A

mutation

l l deletion

l Insertion

end TIAIGIT|G|T|[C]A

Goal of alignment: Infer edit operations

begin A|C|IG|IT|C|IA|T|C|A

end TIAIGIT|G|T|[C]A

From Bio to CS: Formalizing the problem

Define set of evolutionary operations (insertion, deletion, mutation)
— Symmetric operations allow time reversibility (part of design choice)

N\

Human Mouse Human Mouse

Mouse

»

»
»

Xty

« Define optimality criterion (min number, min cost)
—Impossible to infer exact series of operations (Occam’s razor: find min)

Human \/\\///\//\\/r_\?//\w'\: Mouse
Design algorithm that achieves that optimality (or approximates it)
—Tractability of solution depends on assumptions in the formulation

— Many possible transformations

— Minimum cost transformation(s)

Special cases

' ' ili Algorithms
Relevangg Assumptions
Correctness Tradeoffs Implementation Tractablllty

Computability

Note: Not all decisions are conflicting (some are both relevant and tractable)
(e.g. Pevzner vs. Sankoff and directionality in chromosomal inversions)

Formulation 1: Longest common substring

« Given two possibly related strings S1 and S2
— What is the longest common substring? (no gaps)

S1 |A|IC|G|TIC|A|T|C|A

S2 |[TIA|G|T|G|T|C|A

‘ offset: +1

S1 AICIG|ITICIA|T|C|A
X X X X X X B B E
S2 AlGITIGITIC|A
‘oﬂ’set:-z
S1 AIC|GITICIA|T|C|A
XX X X B 0 B B X X X
S2 |T|IA|GITIG|TICIA

Formulation 2: Longest common subsequence

« Given two possibly related strings S1 and S2
— What is the longest common subsequence? (gaps allowed)

S1 |A|IC|G|TIC|A|IT|C|A

~ | 1 ==
S2 |T|A|G|T ClA
S1 AIC|IGIT|CIA|T|C|A| Editdistance:
Aln|vViElE|X V[E|E]|E]
g2 FA alTtlc Tlcla Number of changes
needed for S1->S2
LCSS A G|T TICIA| . Uniform scoring

function

Formulation 3: Sequence alignment

* Allow gaps (fixed penalty)
— Insertion & deletion operations
— Unit cost for each character inserted or deleted

* Varying penalties for edit operations

— Transitions (Pyrimidine & Pyrimidine, Purine & Purine)
— Transversions (Purine < Pyrimidine changes)
— Polymerase confuses Aw/G and Cw/T more often

Scoring function: A| G| T/| C/| Transitions:

Match(x,x) = +1 A|+1|-%]|-1]|-1|AGl[CeT/common

Mismatch(A,G)=-% | | G |-14| +1 | -1 | -1 (lower penalty)

Mismatch(C,T)= -2 T1-11-11|+1]|-%]| Transversions:

Mismatch(x,y) = -1 C |11 -11-%|+1]| Al other operations
purine pyrimid.

How can we compute the optimal alignment

S1 |A|C|G|T|C|A|T|C|A

S2 |[T|A|G|T|G|T|C|A

 Given additive scoring function:
— Cost of mutation (AG, CT, other)
— Cost of insertion / deletion
— Reward of match
* Need algorithm for inferring best alignment
— Enumeration?
— How would you do it?
— How many alignments are there?

Can we simply enumerate all possible alignments?

* Ways to align two sequences of length m, n

[ﬂ | mj _(m+ny! 2™

m m)?> Jr-m

For two sequences of length n

n Enumeration Today's lecture
10 184,756 100

20 1.40E+11 400
100 9.00E+58 10,000

Key insight: score is additive!
i
S1 |A|C|G|T|C|A|T|C|A

S2 |[T|A|G|T|G|T|C|A
A

J
« Compute best alignment recursively
— For a given aligned pair (i,), the best alignment is:
Best alignment of S1[1..]] and S2[1..j]
 + Best alignment of S1[i..nJand S2[|..m]

S1 ACI|G TICIAITICIA

S2 |[T|A|G|T|G TICIA

S1
S2

Key insight: re-use computation

\ 4
S1 G|T|ICIA|TICI|A S1 |[A|IC|G
S2 A TIG|T|IC|A S2 [T|IA|G
A

AlC|G C|A|T|C|A| S1 C

T TIG||TIC|A S2 A
A

S1 CIG|T S1 G
S2 TG

|dentical sub-problems! We can reuse our work!

Solution #1 — Memoization

« Create a big dictionary, indexed by aligned seqs
— When you encounter a new pair of sequences
— If it is in the dictionary:
* Look up the solution
— If it is not in the dictionary

« Compute the solution
 |nsert the solution in the dictionary

* Ensures that there is no duplicated work
— Only need to compute each sub-alignment once!

Top down approach

Solution #2 — Dynamic programming

» Create a big table, indexed by (i,))
— Fill it in from the beginning all the way till the end
— You know that you'll need every subpart
— Guaranteed to explore entire search space
* Ensures that there is no duplicated work
— Only need to compute each sub-alignment once!

* Very simple computationally!

Bottom up approach

Duality: seq. alignment <& path through the matrix

AIC|G|T|IC|IA|T|C|A
A B BB X VE §E B
TIA| |G|T T|cla
S1
AIC|GIT|CIA|T|C|A
s2 [Th
gA G Goal:
T T Find best path
G C/G| o through the matrix
T T
C C
A A

(1, 2, 3) Store score of aligning (i,})) In matrix M(l,))

S[1..i] i S[i..Nn]
T[1..]]
\
2\
J S
T j
J..m] _ _
Best alignment & Best path through the matrix E
_

Setting up the scoring matrix

Initialization:
 Top left: 0
Update Rule:

. . A(i,))=max{

A G T
SO BN O

A

>

}

Termination:
* Bottom right

Q

C

Setting up graph of scores

Initialization:

 Top left: 0

Update Rule:

A(l,))=max{
* A1, J)-2 gap
* AC1,]-1)-2 gap
* AT) 1)m|13match

o A(-1,J-1)+1
} match

Termination:
* Bottom right

Dynamic Programming for sequence alignment

Setting up dynamic programming
1. Find ‘'matrix’ parameterization
» Prefix parameterization. Score(S[1..i], T[1..]]) = F(i,))
* (i,j) only prefixes vs. (i,},k,l) all substrings =» simpler 2-d matrix
2. Make sure sub-problem space is finite! (not exponential)
« It’s just n?, quadratic (which is polynomial, not exponential)
3. Traversal order: sub-results ready vzvhen you need them
l Cols =——=3 Rows / Diags

b L>R top->bot topR->botL

4. Recursion formula: larger problems = F(subparts)
 Need formula for computing F(i,j) as function of previous results

« Single increment at a time, only look at F(i-1,j), F(i,j-1), F(i-1,}-1)
corresponding to 3 options: gap in S, gap in T, char in both

« Score in each case depends on gap/match/mismatch penalties
5. Remember choices: typically F() includes min() or max()
« Remember which of three cells (top,left,diag) led to maximum

More details on the recursion formula

« Computing the score of a cell from its neighbors

F(i-1,)) - gap
— F(i,j) = max{ F(i-1,j-1) + score }
FC i, j-1) - gap

« Compute scores for prefixes of increasing length

— This allows a single recursion (top-left to bottom-right)
instead of two recursions (middle-to-outside top-down)

— Only three possibilities for extending by one nucleotide:
a gap in one species, a gap in the other, a (mis)match

— When you reach bottom right, prefix of length nis seq S
« Local update rules, only look at neighboring cells:

— Compute next alignment based on previous alignment

— Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]

— Table lookup avoids repeated computation

Today: Dynamic programming

Fibonacci numbers
— Top-down vs. bottom-up

Principles of Dynamic programming
— Optimal sub-structure, repeated subproblems

Crazy Eights

— One-dimensional optimization: n entries

— Search all previous elements: O(n?) total time
Sequence alignment

— Two-dimensional optimization: n? entries
— Search only 3 previous entries: O(n?) total time

Dynamic Programming module

Optimization technique, widely applicable

» Optimal substructure »Overlapping subproblems
Today: Simple examples, alignment

— Simple examples: Fibonacci, Crazy Eights

— Alignment: Edit distance, molecular evolution
Thursday: More DP

— Alignment: Bound, Linear Space, Affine Gaps

— Back to paths: All Pairs Shortest Paths DP1,DP2
Next week:

— Knapsack (shopping cart) problem

— Text Justification

— Structured DP: Vertex Cover on trees, phylogeny

Course VI - 6.006 — Module VI = This is it

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro Ps1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxatigeol=arithoae
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths II: Bellman-Ford, DAGs 15 |Shortest Dyn amic
Etj;iahg.c;nuj/j/llo 9 I:j ipr 05 16| Shortest PalthslIII. Dijkstra 16 |Speeding Prog rammin g
: pr07 |17] Graph applications, Genome Assembly 17|Euler To
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19] DP Il: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr 21 | 20| DP IlI: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21 PhonEeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24 |Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26] Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

