Introduction to Algorithms 6.006

Lecture 17

Prof. Piotr Indyk

- Last two weeks
 - Bellman-Ford
 - O(VE) time
 - general weights
 - Dijkstra
 - O((V+E)logV) time
 - non-negative weights
- Today: applications
 - Obstacle course for robots
 - Scheduling with constraints

Obstacle course for robots

- Obstacles: disjoint triangles T₁...T_n
- Robot: a point at position A
- Goal: the shortest route from A to B

Path planning algorithm

- Let V be the set consisting of triangle vertices, A and B
 - Note that V=O(n)
- Observation: the shortest path consists of line segments between points in V
- Approach:
 - For each pair u,v in V such that the segment u-v is "free", create an edge u-v
 - (weight = segment length).
 - This is called **visibility graph** G
 - Compute the shortest path from A to B in G

Computing visibility graph

- For each segment u-v, check whether there is any triangle T_i such that one of its sides (say, s) intersects u-v
 - The test whether s intersects u-v can be done in O(1) time
 [CLDS 22.1] or leasture 241
 - [CLRS 33.1, or lecture 24]
- Time: $O(V^3)$
 - [Lozano-Perez'79]
- Total time for path planning? O(V³)
- Best known: O(V log V) [Hershberger-Suri'97]

Solving a system of difference constraints

Difference constraints: a system of linear inequalities of the form $x_j - x_i \le w_{ij}$ **Example:** Solution:

 $\begin{array}{ll} x_1 - x_2 \leq 3 & x_1 = 3 \\ x_2 - x_3 \leq -2 & x_2 = 0 \\ x_1 - x_3 \leq 2 & x_3 = 2 \end{array}$

Application: parallel task scheduling with precedence constraints:

- x_i : the starting time of the job i
- If a job i needs to be finished before job j starts:

 $x_i \ge x_i + duration(i)$

• The time from start to finish should be at most t: x_j +duration(j) - $x_i \le t$ for all i,j

Solving difference constraints via shortest paths

Constraint graph:

- A vertex v_i for each variable x_i
- An edge for each constraint:

$$x_j - x_i \le w_{ij} \quad \square \qquad \bigvee \quad \bigvee_i \stackrel{W_{ij}}{\longrightarrow} \bigvee_j$$

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Then, we have

$x_2 - x_1$	$\leq W_{12}$
$x_3 - x_2$	$\leq W_{23}$
$x_k - x_{k-1}$	$\leq W_{k-1, k}$
$x_1 - x_k$	$\leq W_{k1}$

Therefore, no values for the x_i can satisfy the constraints.

 $0 \le \text{weight of cycle} < 0$

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable. *Proof.* Add a new vertex *s* to *V* with a 0-weight edge to each vertex $v_i \in V$.

Note:

No negative-weight cycles introduced \Rightarrow shortest paths exist.

Proof (continued)

Claim: The assignment $x_i = \delta(s, v_i)$ solves the constraints. Consider any constraint $x_j - x_i \le w_{ij}$, and consider the shortest paths from *s* to v_i and v_i :

The triangle inequality gives us $\delta(s, v_j) \le \delta(s, v_i) + w_{ij}$. Since $x_i = \delta(s, v_i)$ and $x_j = \delta(s, v_j)$, the constraint $x_j - x_i \le w_{ij}$ is satisfied.

Bellman-Ford

Corollary. The Bellman-Ford algorithm can solve a system of *m* difference constraints on *n* variables in O(mn) time.

Note: Bellman-Ford also minimizes $\max_{i} \{x_i\} - \min_{i} \{x_i\}$ (exercise)