6.006- Introduction to Algorithms

| ecture 13

Prof. Manolis Kellis
CLRS 22.4-22.5

Goal for today: Graphs I

» Recap on graphs, games, searching, BFS
— Defs, Rubik, BFS, correctness, shortest paths

» Depth first search (DFS). DFS vs. BFS

— Algorithm, runtime, correctness, edge classes
» Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected
 Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

e G=(V,E)
G raphS e V aset of vertices

» Usually number denoted by n
e EcC V' Vasetof edges (pairs of vertices)

» Usually number denoted by m
= Note m <n(n-1) = O(n?)

Undirected example Directed example

O () o

() O, () ()
« V={ab,c,d}
- V={ab,c}

+ E={{ab}, {a.c}, {bc,
b redil e E= {(ae) (ab) (be), (b))

2§tear(:h|ng for a solution path
6 neighbors e ﬁ

1 turn

How big 1s the space?

* Graph algorithms allow us explore space
— Nodes: configurations
— Edges: moves between them
— Paths to ‘solved’ configuration: solutions

BFS algorithm outline

e Initial vertex s

— Level O

* Fori=1,... V
grow level 1
— Find all neighbors of leveid-1 \ X f
— (except those already seen) :

VR4

—1.e. level 1 contains vertices Level 3
reachable via a path of 1 edges X

and no fewer
» Where can the other edges of the graph be? -¢vel 2

— They cannot jump a layer (otherwise v would be 1n
Level 2)

— {But {hey can be between nodes 1n same or adjacent
evels

BFS Algorithm

« BFS(V.Adj,s)
level={s: 0}; parent = {s: None}; i=1

frontier=[s] #previous level, 1-1
while frontier
next=]| #next level, 1
for u in frontier
for v in Adj[u]
if v not in level #not yet seen
level[v] =1 #level of u+1
parent[v]=u
next.append(v)

frontier = next
1+=1

BFS Analysis: Correctness

1.e. why are all nodes reachable from s explored?
(we’ll actually prove a stronger claim)

o Claim: If there 1s a path of L edges from s to v,
then v 1s added to next when 1=L or before

e Proof: induction —

= Base case: s is added before setting i=1 m
= Inductive step when i=L: @ e

e Consider path of length L from s to v

e This must contain: (1) a path of length L-1 from s to u
. (2) and an edge (u,v) fromutov

* By inductive hypothesis, u was added to next
when 1=L-1 or before

 If v has not already been inserted in next before 1=L,
then 1t gets added during the scan of Adj[u] at 1i=L

» So it happens when 1=L or before. QED

Corrollary: BFS->Shortest Paths

e From correctness analysis, conclude more:
» Level[v] is length of shortest s=>v path

e Parent pointers form a shortest paths tree

" 1.¢. the union of shortest paths to all vertices

e To find shortest path from s to v

* Follow parent pointers from v backwards

Shortest paths t

3 orespa
D o 2 C
: O—®

" Willend up at s

$

Goal for today: Graphs I

Recap on graphs, games, searching, BFS
— Defs, Rubik, BFS, correctness, shortest paths

Depth first search (DFS). DFS vs. BFS

— Algorithm, runtime, correctness, edge classes

Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected
Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

Depth First Search (DFS)

DFS Algorithm Outline

e Explore a maze
» Follow path until you get stuck
» Backtrack along breadcrumbs till find new exit

" 1.e. recursively explore

1* L 'IEE
b :
:
i
|:."

DFS Algorithm

e parent = {s: None}
 call DFS-visit (V, Adj, s)

def DFS-visit (V, Adj, u)
for v in Adj[u]
1f v not 1n parent #not yet seen
parent[v]=u

DFS-visit (V, Adj, v) #recurse!

DFS example run (starting from s)

DFS Runtime Analysis

Quite similar to BFS
DFS-visit only called once per vertex v

» Since next time v 1s 1n parent set
Edge list of v scanned only once (in that call)
So time 1 DFS-visit 1s:

" | per vertex + 1 per edge
So time 1s O(n+m)

DFS Correctness?

e Trickier than BFS

e Can use induction on length of shortest path from
starting vertex

* Inductive Hypothesis:
“each vertex at distance k 1s visited (eventually)”

" Induction Step:

e Suppose vertex v at distance k.
* Then some u at shortest distance k-1 with edge (u,v)
» Can decompose into s=>u at shortest distance k-1, and (u,v)

e By inductive hypothesis: u is visited (eventually)
e By algorithm: every edge out of u 1s checked

= [f v wasn’t previously visited, it gets visited from u (eventually)

Edge Classification

Tree edge used to get to new child

Back edge leads from node to ancestor 1n tree
Forward edge leads to descendant 1n tree
Cross edge leads to a different subtree

To label what edge 1s of what type, keep global
time counter and store interval during which
vertex 1s on recursion stack

8
________ ,// ~~~§§
-~ ~ -
“ d edge™ =
Cross edge Forward edge

Goal for today: Graphs I

Recap on graphs, games, searching, BFS

— Defs, Rubik, BFS, correctness, shortest paths
Depth first search (DFS). DFS vs. BFS
— Algorithm, runtime, correctness, edge classes
Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected
Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

BFS vs. DFS

Breadth First Search

e start with vertex v
= Jist all 1ts neighbors (dist 1)
* then all their neighbors (distance 2) el

e Define frontier {s}-2> {distl}-> {dist2}

frontier

e Repeat until all vertices found

Depth First Search

» Like exploring a maze

 From current vertex, move to another

e Until you get stuck

* Then backtrack till new place to explore

VI

/

/

\

%
k!

N7

5

H
*

X
) I‘ ‘

O]

NTARY!.

Re

BFS/DFS Algorithm Similarities

e Maintain “todo list” of vertices to be scanned

e Until list 1s empty
» Take a vertex v from front of list
* Mark 1t scanned
» Examine all outgoing edges (v,u)
= If u not marked, add to the todo list

 BFS: add to end of todo list (queue: FIFO)
e DFS: add to front of todo list (recursion stack: LIFO)

Key difference: Queue vs. Stack

 BFS queue 1s explicit
* Created 1n pieces

" (level 0 vertices) . (level 1 vertices) . (level 2
vert...

* the frontier at Iteration I is piece I of vertices in
queue

e DFS stack 1s implicit
» [t’s the call stack of the python interpreter

* From v, recurse on one child at a time

* But same order 1f put all children on stack, then
pull off (and recurse) one at a time

Goal for today: Graphs I

Recap on graphs, games, searching, BFS
— Defs, Rubik, BFS, correctness, shortest paths
Depth first search (DFS). DFS vs. BFS

— Algorithm, runtime, correctness, edge classes

Applications of DFS
— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected
Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

Topological Sort

Job Scheduling

e (J1ven
= A set of tasks

» Precedence constraints

e saying “u must be done before v”

= Represented as a directed graph
e Goal:

* Find an ordering of the tasks that satisfies all
precedence constraints

Scheduling a set of jobs
Make busiD @II out of bed>
la

seconds f

Drag a comb

across my head L°°:< qu’
at cloc

Notice that
I’'m late Qrink a CUD
Find my way
Grab my hat
Qownstairs < y

Defining job ordering constraints

Fall out o@
\/D7 L —

1
- ragacomb
3
across my head
Find my way
4 downstairs

5 Qrink a CUD @
Notice I’'m
late
7

Make the bus
in seconds flat

Grab my hat

Feasibility / schedule existence

e [s there a schedule?
Fix hole
in bucket

Sharpen
Axe

e Each requires previous one to be completed first

Directed Acyclic Graphs (DAGS)

e Directed Acyclic Graph
» Graph with no cycles = A schedule exists!

e Source: vertex with no incoming edges
e Claim: every DAG has a source

= Start anywhere, follow edges backwards
" [f never get stuck, must repeat vertex

* So, get stuck at a source

e Conclude: every DAG has a schedule
* Find a source, 1t can go first

* Remove, schedule rest of work recursively

Scheduling algorithm 1 (for DAGS)

Find a source
» Scan vertices to find one with no incoming edges
" Or use DFS on backwards graph

Remove, recurse

Time to find one source
* O(m) with standard adjacency list representation

* Scan all edges, count occurrence of every vertex
as tail

Total: O(nm)

Scheduling algorithm 2 (for DAGS)

Consider DFS

Observe that we don’t return from recursive call
to DFS(v) until all of v’s children are finished

So, “finish time” of v 1s later than finish time of
all children

Thus, later than finish time of all descendants
= 1.e., vertices reachable from v

* Descendants well-defined since no cycles

So, reverse of finish times is valid schedule

Implementation of scheduling alg 2

e seen = {}; finishes= {};time =20
DFS-visit (s)
for v in Adj[s]
1f v not 1n seen
seen[v] =1

DFS-visit (v) only set finishes if

ti_m_e = time+1 _ done processing all
finishes[v] = time edges leaving v

e TopologicalSort
forsmmV
DFS-visit(s)

e Sort vertices by finishes[] key

@II out of bed> 9
° \
3 Drag a comb
across my head
Find my way
downstairs

7

6
@b my hat

B In progress

Make bus in
seconds flat

I Completed

Analysis

 Just like connected components DFS
* Time to DFS-Visit from all vertices 1s O(m+n)

* Because we do nothing with already seen vertices
e Might DFS-visit a vertex v before its ancestor u
" 1.e., start in middle of graph

= Does this matter?

» No, because finish[v] < finish[u] in that case

Handling Cycles

If two jobs can reach each other, we must do
them at same time

Two vertices are strongly connected if each
can reach the other

Strongly connected 1s an equivalence relation
* So graph has strongly connected components

Can we find them?

" Yes, another nice application of DFS
= But tricky (see CLRS)

" You should understand algorithm, not proof

Goal for today: Graphs I

Recap on graphs, games, searching, BFS

— Defs, Rubik, BFS, correctness, shortest paths
Depth first search (DFS).

— Algorithm, runtime, correctness, edge classes
Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected

Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

Connected Components

Connected Components

e Undirected graph G=(V,E)

e Two vertices are connected 1f there 1s a path
between them

e An equivalence relation

e Equivalence classes are called components

= A set of vertices all connected to each other

e

Finding all connected components

To find one connected component:

e The key idea: Both DFS and BFS will reach all
vertices reachable from starting vertex s

" i.e., the ‘component’ of any starting vertex s

e Start with any vertex s:
= Run DFS (or BFS) to find all vertices in component
* Mark them as belonging to the same component as s

To find all connected components:

e Run the above search n times
= Starting with every vertex

Naive Algorithm: DFS n times

DFS-visit (u, owner, o)
#mark all nodes reachable from u with owner o

for v in Adj[u]
if v not 1n owner #not yet seen
ownerfv]l=o #instead of parent

DFS-visit (v, owner, 0)

DFS-Visit(s, owner, s) will mark owner[v]=s
for any vertex reachable from s

Correctness:

= All vertices in same component will receive the same
ownership labels

Cost?
* n times BFS/DFS? 2 O(n(m+n))?

Better: DFS only for unmarked vertices

If vertex has already been reached, don’t need to
search from 1it!

* [ts connected component already marked with owner

owner ={} # global variable owner
forsmnV
if not(s 1n OwWner)
DFS-Visit(s, owner, s) #or can use BFS

Now every vertex examined exactly twice

* Once 1n outer loop and once in DFS-Visit
And every edge examined once

* In DFS-Visit when its tail vertex 1s examined

Total runtime to find components 1s O(m+n)

Directed Graphs

e In undirected graphs, connected components
can be represented 1n n space

* One “owner label” per vertex

e Can ask to compute all vertices reachable from
each vertex 1n a directed graph
" 1.¢. the “transitive closure” of the graph
* Answer can be different for each vertex
» Explicit representation may be bigger than graph

» E.g. size n graph with size n? transitive closure

o0 0 000 ¢

Goal for today: Graphs I

Recap on graphs, games, searching, BFS

— Defs, Rubik, BFS, correctness, shortest paths
Depth first search (DFS).

— Algorithm, runtime, correctness, edge classes
Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected

Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

Global properties of networks

Mostly pointers for further reading

Networks in the real world

facebook i
Infrastructure: Internet, power, transport, distribution

Social: friends, actors, co-authors, affiliation members

Information: web pages, paper citations, patents,
file-sharing, shopping lists, document-keyword

Biology: physical, metabolic, regulatory, neural, ecological

Properties of real-world networks

Small-world property: Milgram 6-degrees (’60s)
* Any pair of vertices connected by short paths
= People find these paths with no global information

‘Scale-free’/power-law degree distribution:
= 80/20 rule: 80% of connections in 20% of vertices

* Few heavily-connected hubs, most lie in the fringes

Network growth and preferential attachment

* Rich-get-richer can lead to power-law distributions
Clustering coefficient: average probability that v’s
neighbors are also connected to each other.

» Measures the density of closed vs. open ‘triangles’

» More generally: measure frequency of all network motifs,

1.e. over-/under-representation of all sub-graphs size 3.4,5,...

Network ‘motifs’

* Network building blocks
= Smallest meaningful unit
 Interpretable circuit
components
* Feed-forward loops
* Feedback loops
* Cross-regulation
* Amplification, etc
» Discovered based on
thelr over-representation

* Compared to ‘random’ net

Network Motif

Example genes
A pB g C

; twi h bantam
Cross-regulating : ‘I sna prd mir-8
TFs co-targeting q eve gt mir-10
a miRNA @ run prd mir-14
F=2.996 Z7Z=5.637 c kni gt mir-277
bcd cad ph-p

Cross-regulatory 2 mod(mdg4) Kr Dsp1
clique of TFs BEAF-32 Myb Med

L 1 Cp190 mip120 phol
2.063 3.453 c cad Chro di
Feed-forward A mir-1 twi sna
loop with A mir-315 gt Kr
cross-regulating & mir-14 run h
TFs and a miRNA —>Q m!r7263a prd Kr
1.969 2.311 mir-8 h hb
Double feed-forward A prd gt shn
loop: cross-regulating bab1 t”f disco
TFs co-targeted by 4 . LfIIB r\m/1|r]221310 :\flyl;z
another TF & " 3 a e in-
1.294 4.507 . GATAe Mef2 z
Feedback loop L tin mir-1000 Kr
from downstream sna mir-1 C15
TF to upstream TF Kr mir-315 sna
via a microRNA hb mir-8 nub
1.273 1.295 sens mir-9abc eve
Feed-forward loop mir-958 hkb Csk
with a miRNA bantam twi dap
ending at a mir-8 sha crb
target gene mir-124 sna Gli
1.259 1.797 mir-263a run Mes2
Cross-regulating i——a Bho 5"‘ Seim
TFs co-targeting g 7 1d n
a target gene X dl lin-52 px

® phol Med tna
1.256 12.625 G mip120 Myb Moe
Cross-regulating xa z Med run
TFs co-targeting 8 7 Dsp1 phol lin-52
another TF gt shn cic
1.158 7.117 . trx disco CcBP
Fold Enr. Z-score C prd ph-p Antp

Interpreting biological network properties
e Hierarchical organization

" Master regulators vs.

mir-34

2b-2/2a-1/2b-1

= In-hubs, out-hubs™™

Diameter
» Info transfer ...

Modularity =
= Locality

Clustering
= Subnetworks

Flow direction
* Downward/upward

mir-9a/b/c
mir-124
mir-263a
mir-315
mir-10@ 0«

mir-iab-4as
mir-iab-4

mir-311/310/92b
313/312

mir-987 € 3-
e

local regulators

Degree distributiofi§

mir-1 pp———
mir-100 N
mir-2a-2/13a e il |

mir-1002 @9
- &

mir-968 ¥
-

e

k-]
]
=

&

c
x

eve,

~ ‘\“! ‘-'h"i ,“.‘.{*\‘_”’ o
WM O

ftz-f1(

e

e
9
4

sens

T
]
=

mmm

pho,

let-7

4m|r 7

mir-1005
mir-984

mir-999
mir-137

(cp190/
TAIB ./

mir-4
mir-305
mir-283

P mir-2495
BEDRIL R sall 7 @mir-279/286/996
b AT / [@mir-314

@ mir-2282

D mir-263b

) mir-133

= mir-304
mir-998
/1995/285
@ mir-1008

.’/.”
Q
Ei
S
=
NO
A

mir-190
mir-1006
mir-929

) mir-281-2
= oL mir-981

" mir-12/960
mir-275/306

".rnir-252

mir-316

mle-c_in1
ol o / A £ Ymir-963
a— (\(\mlr 309/318/3

-~ -
A t —.m|r 210

&

=

=]
by

(-N
©
o

shb |

= N o
- - c
o L & H

jumu

z
=
3
»

e.g. modENCODE cohﬁsortlum, Science, 2010

Node properties: Centrality (hubs)

e Centrality of node v can be measured as:
1. Degree centrality: Number of in/out-edges for v, i.e.

2.

3.

0O J4 O O1

number of neighbors as measure of importance/authority.

Eigenvector centrality: sum of centrality of v’s neighbors;
high when v has many neighbors or ‘central’ neighbors

Katz centrality: balances 1 (# of neighbors) and 2
(neighbor centrality) using a weighting parameter

. Page rank: dilutes ‘centrality’ flow out of a vertex by its

number of neighbors. Used in Google search results.

. Closeness centrality: mean distance to other vertices.

. Betweeness centrality: # of shortest paths through v.

. Flow-betweeness: amount of flow through v for all (s,t)

. Random-walk betweeness: s diffusion, sink t, traversing v

Node pairs: Similarity/Closeness

Assortative mixing: Nodes with similar properties
are similar, 1n the same component, clique, etc...
Node similarity, or node equivalence:

= Structural: share many of the same neighbors

» Reqgular: share neighbors with similar properties

Property clustering: A set of n nodes can form a:
= Cligue: fully connected, each n-1 neighbors

= k-plex: nearly fully connected, each n-k neighbors

= k-core: each k neighbors. Note: k-core=(n-k)-plex

Defining graph neighborhoods with components:
= Component: Any 2 nodes linked by at least one path
= k-component: at least k vertex-independent paths

Beyond components / k-components

e Many networks have 1 giant connected component

* But sub-structure exists within 1t eg.‘clusters’ of friends

» Graph partitioning algorithms. Break into k clusters

» Simplest form: graph bisection problem. NP complete
e Exhaustive search (2"!1)/vn partitions. Only heuristics

» Kernigan-Lin: Divide randomly, and re-assign members
* Spectral partitioning: uses graph Laplacian -
measures ‘diffusion’ (vs. connectivity) :
e Community detection algorithms

" Discover coherent small groups

* Modularity maximization

e Spectral, betweeness-based, other e.g. facebook friend network

Dynamic processes on networks

Percolation and network resilience
» Uniform/non-uniform removal of vertices/edges/hubs
" E.g. router failure, network attack, vaccination

Epidemics on networks

» Spread of disease, susceptible/infected/recovered

* Time-dependent properties of disease spreading
Dynamical systems on networks, rates, dx/dt

* Metabolic modeling, steady-state analysis/fixed points
" Information flow, stability, synchronization

Network search

= Web search, distributed databases, message passing

Recommended further reading

Networks

An Introduction

NETWORKS

o MARKETS

Reasoning

JON KLEINBERG

about a Highly Connected World

DAVID EASLEY

2B~
/3
-/ &’_ o -

- YA

CROWDS

and

Today’s recap: Graphs I

Recap on graphs, games, searching, BFS

— Defs, Rubik, BFS, correctness, shortest paths
Depth first search (DFS).

— Algorithm, runtime, correctness, edge classes
Applications of DFS

— Topological Sort on DAGs, job scheduling

— Connected components, strongly connected
Properties of real-world & biological networks

— Types, small-world, scale-free, growth, motifs,
interpreting, centrality, similarity, dynamics

Games, Graphs, Searching, Networks

Graphs I: Introduction to Games and Graphs

e Rubik’s cube, Pocket cube, Game space

e Graph definitions, representation, searching
Graphs Il: Graph algorithms and analysis

e Breadth First Search, Depth First Search

* Queues, Stacks, Augmentation, Topological sort
Graphs I11: Networks in biology and real world
* Network/node properties, metrics, motifs, clusters
e Dynamic processes, epidemics, growth, resilience

Next: Shortest paths... Happy Spring Break!

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 |Q1]| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching Ill: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

