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Goal for today: Graphs III
• Recap on graphs, games, searching, BFS

Defs Rubik BFS correctness shortest paths– Defs, Rubik, BFS, correctness, shortest paths
• Depth first search (DFS). DFS vs. BFS

– Algorithm, runtime, correctness, edge classes
• Applications of DFSpp f

– Topological Sort on DAGs, job scheduling
Connected components strongly connected– Connected components, strongly connected

• Properties of real-world & biological networks
– Types, small-world, scale-free, growth, motifs, 

interpreting, centrality, similarity, dynamics



Graphs
• G=(V,E)
• V a set of verticesp

 Usually number denoted by n

• E V ´ V a set of edges (pairs of vertices)
U ll b d d b Usually number denoted by m

 Note m ≤ n(n-1) = O(n2)

a b a

Undirected example Directed example

• V={a,b,c,d}
• V = {a b c}

c d b c

• E={{a,b}, {a,c}, {b,c}, 
{b,d}, {c,d}}

• V = {a,b,c}
• E = {(a,c), (a,b) (b,c), (c,b)} 



Searching for a solution pathSearching for a solution path

1 t

6 neighbors
27 two-away

1 turn

How big is the space?g p

• Graph algorithms allow us explore space
– Nodes: configurations
– Edges: moves between themg
– Paths to ‘solved’ configuration: solutions



BFS algorithm outline
I iti l t• Initial vertex s
– Level 0

• For i=1 v• For i=1,… 
grow level i
– Find all neighbors of level i-1 sg
– (except those already seen)
– i.e. level i contains vertices 

h bl i th f i d
Level 3

reachable via a path of i edges 
and no fewer

• Where can the other edges of the graph be?Level 1
Level 2Where can the other edges of the graph be?

– They cannot jump a layer (otherwise v would be in 
Level 2)

h b b d i dj

Level 1

– But they can be between nodes in same or adjacent 
levels



BFS Algorithm

• BFS(V,Adj,s)
l l { 0} t { N } i 1level={s: 0}; parent = {s: None}; i=1
frontier=[s]                      #previous level, i-1
while frontierwhile frontier

next=[]                           #next level, i
for u in frontier

for v in Adj[u]
if v not in level #not yet seen

level[v] = i #level of u+1level[v] = i #level of u+1
parent[v] = u
next.append(v)

frontier = next
i += 1



BFS Analysis: Correctness
i e why are all nodes reachable from s explored?

• Claim: If there is a path of L edges from s to v

i.e. why are all nodes reachable from s explored?
(we’ll actually prove a stronger claim)

Claim: If there is a path of L edges from s to v, 
then v is added to next when i=L or before

• Proof: induction L‐1 L

u

L‐1

 Base case: s is added before setting i=1
 Inductive step when i=L: 

• Consider path of length L from s to v

(…)

u
v

s

• Consider path of length L from s to v
• This must contain: (1) a path of length L-1 from s to u
• (2) and an edge (u,v) from u to v

 B i d ti h th i dd d t t By inductive hypothesis, u was added to next 
when i=L-1 or before

• If v has not already been inserted in next before i=L, 
then it gets added during the scan of Adj[u] at i=Lthen it gets added during the scan of Adj[u] at i=L

 So it happens when i=L or before. QED



Corrollary: BFSShortest PathsCorrollary: BFSShortest Paths
• From correctness analysis, conclude more:

L l[ ] i l h f h  h Level[v] is length of shortest sv path
• Parent pointers form a shortest paths tree
 i.e. the union of shortest paths to all vertices

• To find shortest path from s to vp
 Follow parent pointers from v backwards 
 Will end up at sp

a s d f
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Shortest paths tree
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Goal for today: Graphs III
• Recap on graphs, games, searching, BFS

Defs Rubik BFS correctness shortest paths– Defs, Rubik, BFS, correctness, shortest paths
• Depth first search (DFS). DFS vs. BFS

– Algorithm, runtime, correctness, edge classes
• Applications of DFSpp f
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Connected components strongly connected– Connected components, strongly connected

• Properties of real-world & biological networks
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Depth First Search (DFS)Depth First Search (DFS)



DFS Algorithm OutlineDFS Algorithm Outline
• Explore a mazep
 Follow path until you get stuck
 Backtrack along breadcrumbs till find new exitg
 i.e. recursively explore



DFS AlgorithmDFS Algorithm

• parent = {s: None}parent  {s: None}
• call DFS-visit (V, Adj, s)

def DFS-visit (V, Adj, u)
for v in Adj[u]

if v not in parent         #not yet seenp y
parent[v] = u
DFS visit (V Adj v) #recurse!DFS-visit (V, Adj, v)  #recurse!



DFS example run (starting from s)

s 1 (in tree)s ( )

2 (

5 (for
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DFS Runtime AnalysisDFS Runtime Analysis
• Quite similar to BFSQ
• DFS-visit only called once per vertex v
 Since next time v is in parent setSince next time v is in parent set

• Edge list of v scanned only once (in that call)
S ti i DFS i it i• So time in DFS-visit is:
 1 per vertex + 1 per edge

• So time is O(n+m)



DFS Correctness?DFS Correctness?
• Trickier than BFS
• Can use induction on length of shortest path from 

starting vertexg
 Inductive Hypothesis: 

“each vertex at distance k is visited (eventually)”
 Induction Step: 

• Suppose vertex v at distance k. 
 Then some u at shortest distance k 1 with edge (u v) Then some u at shortest distance k-1 with edge (u,v)
 Can decompose into su at shortest distance k-1, and (u,v)

• By inductive hypothesis: u is visited (eventually)
• By algorithm: every edge out of u is checked

 If v wasn’t previously visited, it gets visited from u (eventually)



Edge ClassificationEdge Classification

• Tree edge used to get to new childTree edge used to get to new child
• Back edge leads from node to ancestor in tree
• Forward edge leads to descendant in tree• Forward edge leads to descendant in tree
• Cross edge leads to a different subtree

T l b l h t d i f h t t k l b l• To label what edge is of what type, keep global 
time counter and store interval during which 
vertex is on recursion stackvertex is on recursion stack

tree edge

Cross edge Forward edge
Back edge
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BFS vs DFSBFS vs. DFS



Breadth First SearchBreadth First Search
• start with vertex v
 list all its neighbors (dist 1)list all its neighbors (dist 1)
 then all their neighbors (distance 2)

• Define frontier {s}{dist1}{dist2}{ } { } { }
• Repeat until all vertices found

D th Fi t S hDepth First Search
• Like exploring a maze
• From current vertex, move to another
• Until you get stuck
• Then backtrack till new place to explore



BFS/DFS Algorithm SimilaritiesBFS/DFS Algorithm Similarities
• Maintain “todo list” of vertices to be scanned

• Until list is emptyUntil list is empty
 Take a vertex v from front of list
 Mark it scanned Mark it scanned
 Examine all outgoing edges (v,u)

If t k d dd t th t d li t If u not marked, add to the todo list
• BFS: add to end of todo list 
• DFS: add to front of todo list

(queue: FIFO)
(recursion stack: LIFO)• DFS: add to front of todo list (recursion stack: LIFO)



Key difference: Queue vs. StackKey difference: Queue vs. Stack
• BFS queue is explicit
 Created in pieces
 (level 0 vertices) . (level 1 vertices) . (level 2 

vert…
 the frontier at iteration i is piece i of vertices in 

queuequeue
• DFS stack is implicit
 It’s the call stack of the python interpreter It s the call stack of the python interpreter
 From v, recurse on one child at a time
 But same order if put all children on stack then But same order if put all children on stack, then 

pull off (and recurse) one at a time
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Topological SortTopological Sort



Job SchedulingJob Scheduling
• Given 
 A set of tasks
 Precedence constraints 

• saying “u must be done before v”

 Represented as a directed graphp g p
• Goal:
 Find an ordering of the tasks that satisfies allFind an ordering of the tasks that satisfies all 

precedence constraints



k b i

Scheduling a set of jobs
Fall out of bedMake bus in 

seconds flat

Look up 
(at clock)

Drag a comb 
across my head

Notice that

Find my 
coatNotice that 

I’m late Drink a cup

Wake up

Find my way 
d

Wake up

Grab my hat
downstairs

y



Wake upFall out of bed2 1

Defining job ordering constraints
Wake up

Drag a comb 
across my head

Fall out of bed

3

2

Find my way 
downstairs4

Look up
Drink a cup

6
5

Notice I’m 
late8 late

Grab my hat

Find my 
coat 9

8
7

Make the bus 
in seconds flat 10



Feasibility / schedule existence
I th h d l ?• Is there a schedule?

Fix hole 
in bucket

Fetch 
W t

Cut 
tWater straw

h Sharpen 
Axe

Whet 
Stone

• Each requires previous one to be completed first



Directed Acyclic Graphs (DAGs)y p ( )
• Directed Acyclic Graph

G h i h l A h d l i ! Graph with no cycles A schedule exists!
• Source: vertex with no incoming edges
• Claim: every DAG has a source
 Start anywhere, follow edges backwardsy , g
 If never get stuck, must repeat vertex
 So, get stuck at a source, g

• Conclude: every DAG has a schedule
 Find a source it can go first Find a source, it can go first
 Remove, schedule rest of work recursively



Scheduling algorithm 1 (for DAGs)
• Find a source
 Scan vertices to find one with no incoming edges
 Or use DFS on backwards graph

• Remove, recurseRemove, recurse
• Time to find one source
 O(m) with standard adjacency list representation O(m) with standard adjacency list representation
 Scan all edges, count occurrence of every vertex 

as tailas tail
• Total: O(nm)



Scheduling algorithm 2 (for DAGs)g g ( )

• Consider DFS
• Observe that we don’t return from recursive call 

to DFS(v) until all of v’s children are finishedto DFS(v) until all of v s children are finished
• So, “finish time” of v is later than finish time of 

all childrenall children
• Thus, later than finish time of all descendants

i i h bl f i.e., vertices reachable from v
 Descendants well-defined since no cycles

• So, reverse of finish times is valid schedule



Implementation of scheduling alg 2
• seen = {}; finishes = {}; time = 0

DFS-visit (s)S v s (s)
for v in Adj[s]

if v not in seen         

only set finishes if

seen[v] = 1         
DFS-visit (v) only set finishes if 

done processing all 
edges leaving v

time = time+1
finishes[v] = time

• TopologicalSort
for s in V

DFS-visit(s)
• Sort vertices by finishes[] key



Wake upFall out of bed
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9

Drag a comb 
across my head

8
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Look up
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downstairs

45

Notice I’m 

Look up 
(at clock)

Find my 
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2
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Grab my hat
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In progress
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seconds flat
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AnalysisAnalysis
• Just like connected components DFSp
 Time to DFS-Visit from all vertices is O(m+n)
 Because we do nothing with already seen verticesg y

• Might DFS-visit a vertex v before its ancestor u
 i e start in middle of graph i.e., start in middle of graph
 Does this matter?
 No because finish[v] < finish[u] in that case No, because finish[v] < finish[u] in that case



Handling Cyclesg y
• If two jobs can reach each other, we must do 

h ithem at same time
• Two vertices are strongly connected if each 

can reach the other 
• Strongly connected is an equivalence relationg y q
 So graph has strongly connected components

• Can we find them?Can we find them?
 Yes, another nice application of DFS
 But tricky (see CLRS) But tricky (see CLRS)
 You should understand algorithm, not proof
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Connected ComponentsConnected Components



Connected ComponentsConnected Components
• Undirected graph G=(V,E)g p ( )
• Two vertices are connected if there is a path 

between thembetween them
• An equivalence relation

E i l l ll d t• Equivalence classes are called components
 A set of vertices all connected to each other



Finding all connected components
To find one connected component: 
• The key idea: Both DFS and BFS will reach all y

vertices reachable from starting vertex s
 i.e., the ‘component’ of any starting vertex s

• Start with any vertex s: 
 Run DFS (or BFS) to find all vertices in component
 Mark them as belonging to the same component as s

To find all connected components: 
• Run the above search n times
 Starting with every vertex



Naïve Algorithm: DFS n times
• DFS-visit (u, owner, o)

#mark all nodes reachable from u with owner o
for v in Adj[u]

if v not in owner         #not yet seen
owner[v] = o #instead of parentowner[v]  o         #instead of parent
DFS-visit (v, owner, o)

• DFS-Visit(s, owner, s) will mark owner[v]=s 
f h bl ffor any vertex reachable from s

• Correctness:• Correctness: 
 All vertices in same component will receive the same 

ownership labels
• Cost? 
 n times BFS/DFS?  O(n(m+n))?



Better: DFS only for unmarked verticesy
• If vertex has already been reached, don’t need to 

h f it!search from it!
 Its connected component already marked with owner

• owner = {} # global variable ownerowner  {}    # global variable owner
for s in V

if not(s in owner)
DFS Visit(s owner s) #or can use BFSDFS-Visit(s, owner, s)   #or can use BFS

• Now every vertex examined exactly twice
 Once in outer loop and once in DFS-VisitOnce in outer loop and once in DFS Visit

• And every edge examined once
 In DFS-Visit when its tail vertex is examined

• Total runtime to find components is O(m+n)



Directed GraphsDirected Graphs
• In undirected graphs, connected components g p p

can be represented in n space
 One “owner label” per vertexp

• Can ask to compute all vertices reachable from 
each vertex in a directed grapheach vertex in a directed graph
 i.e. the “transitive closure” of the graph
 Answer can be different for each vertex Answer can be different for each vertex
 Explicit representation may be bigger than graph
 E g size n graph with size n2 transitive closure E.g. size n graph with size n2 transitive closure
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Global properties of networksGlobal properties of networks

Mostly pointers for further reading



Networks in the real world

• Infrastructure: Internet, power, transport, distributionf , p , p ,
• Social: friends, actors, co-authors, affiliation members
• Information: web pages, paper citations, patents, 

file-sharing, shopping lists, document-keyword
• Biology: physical, metabolic, regulatory, neural, ecological



Properties of real-world networks
S ll ld Mil 6 d (’60 )• Small-world property: Milgram 6-degrees (’60s)
 Any pair of vertices connected by short paths
 People find these paths with no global information People find these paths with no global information

• ‘Scale-free’/power-law degree distribution: 
 80/20 rule: 80% of connections in 20% of vertices 80/20 rule: 80% of connections in 20% of vertices
 Few heavily-connected hubs, most lie in the fringes

• Network growth and preferential attachmentNetwork growth and preferential attachment
 Rich-get-richer can lead to power-law distributions

• Clustering coefficient: average probability that v’sCluste ing coefficient: ave age p obab ty t at v s
neighbors are also connected to each other. 
 Measures the density of closed vs. open ‘triangles’
 More generally: measure frequency of all network motifs, 

i.e. over-/under-representation of all sub-graphs size 3,4,5,…



Network ‘motifs’_
• Network building blocks
 Smallest meaningful unitg

• Interpretable circuit 
componentscomponents
 Feed-forward loops
 Feedback loopsFeedback loops
 Cross-regulation
 Amplification etc Amplification, etc

• Discovered based on 
th i t titheir over-representation
 Compared to ‘random’ net



Interpreting biological network properties
• Hierarchical organization• Hierarchical organization
 Master regulators vs. local regulators

D di t ib ti• Degree distribution
 In-hubs, out-hubs

Di t• Diameter
 Info transfer

M d l i• Modularity
 Locality

• Clustering
 Subnetworks

• Flow direction
 Downward/upward e.g. modENCODE consortium, Science, 2010



Node properties: Centrality (hubs)
• Centrality of node v can be measured as:• Centrality of node v can be measured as: 

1. Degree centrality: Number of in/out-edges for v, i.e. 
number of neighbors as measure of importance/authoritynumber of neighbors as measure of importance/authority. 

2. Eigenvector centrality: sum of centrality of v’s neighbors;  
high when v has many neighbors or ‘central’ neighborsg y g g

3. Katz centrality: balances 1 (# of neighbors) and 2 
(neighbor centrality) using a weighting parameter

4. Page rank: dilutes ‘centrality’ flow out of a vertex by its 
number of neighbors. Used in Google search results. 

5 Closeness centrality: mean distance to other vertices5. Closeness centrality: mean distance to other vertices. 
6. Betweeness centrality: # of shortest paths through v.
7 Flow betweeness: amount of flow through v for all (s t)7. Flow-betweeness: amount of flow through v for all (s,t)
8. Random-walk betweeness: s diffusion, sink t, traversing v



Node pairs: Similarity/Closeness
• Assortative mixing: Nodes with similar properties 

are similar, in the same component, clique, etc…
• Node similarity, or node equivalence: 
 Structural: share many of the same neighbors
 Regular: share neighbors with similar properties

• Property clustering: A set of n nodes can form a: 
 Clique: fully connected, each n-1 neighbors
 k-plex: nearly fully connected, each n-k neighbors
 k-core: each k neighbors. Note: k-core=(n-k)-plex

• Defining graph neighborhoods with components: 
 Component: Any 2 nodes linked by at least one path
 k-component: at least k vertex-independent paths



Beyond components / k-components
• Many networks have 1 giant connected component• Many networks have 1 giant connected component
 But sub-structure exists within it eg.‘clusters’ of friends

G h i i i l i h B k i k l• Graph partitioning algorithms. Break into k clusters
 Simplest form: graph bisection problem. NP complete

√• Exhaustive search (2n+1)/√n partitions. Only heuristics

Kernigan-Lin: Divide randomly, and re-assign members
 Spectral partitioning: uses graph Laplacian

measures ‘diffusion’ (vs. connectivity)
• Community detection algorithms
Discover coherent small groups
Modularity maximization

• Spectral, betweeness-based, other e.g. facebook friend network



Dynamic processes on networks
• Percolation and network resilience
 Uniform/non-uniform removal of vertices/edges/hubs
 E.g. router failure, network attack, vaccination

• Epidemics on networks
 Spread of disease, susceptible/infected/recovered
 Time-dependent properties of disease spreading

• Dynamical systems on networks, rates, dx/dt
 Metabolic modeling, steady-state analysis/fixed points
 Information flow, stability, synchronization 

• Network search
 Web search, distributed databases, message passing



Recommended further reading
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Games, Graphs, Searching, Networks

Graphs I: Introduction to Games and Graphs
• Rubik’s cube, Pocket cube, Game space
• Graph definitions, representation, searchingp p g
Graphs II: Graph algorithms and analysis
• Breadth First Search Depth First Search• Breadth First Search, Depth First Search
• Queues, Stacks, Augmentation, Topological sort
Graphs III: Networks in biology and real world
• Network/node properties, metrics, motifs, clusters
• Dynamic processes, epidemics, growth, resilience



Next: Shortest paths…  Happy Spring Break!
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