
6.006- Introduction to
Algorithms

Lecture 12 – Graph Algorithms
Prof. Manolis Kellis

CLRS 22.2-22.3

Combinatorics

Ponytail	
 No	
 ponytail	

Beard	
 Erik	
 ?	

No	
 Beard	
 Piotr	
 Manolis	

Unit #4 – Games, Graphs, Searching, Networks

3

Unit #4 Overview: Searching
Today: Introduction to Games and Graphs
•  Rubik’s cube, Pocket cube, Game space
•  Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis
•  Breadth First Search, Depth First Search
•  Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world
•  Network/node properties, metrics, motifs, clusters
•  Dynamic processes, epidemics, growth, resilience

Last time: Games and Graphs

Pocket Cube

•  2 × 2 × 2 Rubik’s cube
•  Start with any colors
•  Moves are quarter

turns of any face
•  “Solve” by making

each side one color

Searching for a solution path

•  Graph algorithms allow us explore space
– Nodes: configurations
– Edges: moves between them
– Paths to ‘solved’ configuration: solutions

1 turn
6 neighbors

27 two-away

How big is the space?

Graphs

•  V={a,b,c,d}
•  E={{a,b}, {a,c}, {b,c},

{b,d}, {c,d}}

•  V = {a,b,c}
•  E = {(a,c), (a,b) (b,c), (c,b)}

a

c d

b
a

b c

•  G=(V,E)
•  V a set of vertices

  Usually number denoted by n

•  E ⊆ V × V a set of edges (pairs of vertices)
  Usually number denoted by m
  Note m ≤ n(n-1) = O(n2)

Undirected example Directed example

Graph Representation
•  Adjacency lists •  Incidence lists

•  Adjacency matrix •  Implicit representation

a

b

c

c

c /

b /

b /

a

b

c

(a,c) (a,b) /

(b,c) /

(c,b) /

a (1) b (2) c (3)

0 1 1 a	
 (1)	

0 0 1 b (2)	

0 1 0 c (3)	

Neighbors(a)	
 	
 [c,b]	

Neighbors(b)	
 	
 [b]	

Neighbors(c)	
 	
 [b]	

a	

b	
 c	

Today: Searching graphs

	
 ?	

Searching Graph

•  We want to get from current Rubik state to
“solved” state

•  How do we explore?

Breadth First Search
•  start with vertex v
•  list all its neighbors (distance 1)
•  then all their neighbors (distance 2)
•  etc.

•  algorithm starting at s:
  define frontier F
  initially F={s}
  repeat F=all neighbors of vertices in F
  until all vertices found

Depth First Search
•  Like exploring a maze
•  From current vertex, move to another
•  Until you get stuck
•  Then backtrack till you find a new place to

explore

•  “left-hand” rule •  Exploring a maze

How to handle cycles: BFS/DFS

•  What happens if unknowingly revisit a vertex?
 Will eventually happen if graph contains a cycle

•  BFS: get wrong notion of distance
•  DFS: may get in circles
•  Solution: mark vertices

  BFS: if you’ve seen it before, ignore
 DFS: if you’ve seen it before, back up

Breadth First Search (BFS)

BFS algorithm outline
•  Initial vertex s

  Level 0

•  For i=1,…
 grow level i
  Find all neighbors of level i-1

vertices
  (except those already seen)
  i.e. level i contains vertices

reachable via a path of i edges
and no fewer

Level	
 1	

Level	
 2	

Level	
 3	

s	

v	

BFS example

a

c v x z

s d f

1

1
2

2

2 3

3
0

s	

a	

x	

z	

d	

c	

f	

BFS algorithm outline
•  Initial vertex s

  Level 0
•  For i=1,…

 grow level i
  Find all neighbors of level i-1
  (except those already seen)
  i.e. level i contains vertices

reachable via a path of i edges
and no fewer

•  Where can the other edges of the graph be?
  They cannot jump a layer (otherwise v would be in Level 2)
  But they can be between nodes in same or adjacent levels

Level	
 1	

Level	
 2	

Level	
 3	

s	

v	

The ‘frontier’ of BFS exploration

a

c v x z

s d f

1

1
2

2

2 3

3
0

s	

a	

x	

z	

d	

c	

f	

The	
 only	
 edges	
 	

not	
 traversed	
 by	
 BFS	
 	

link	
 verHces	
 	

within	
 the	
 same	
 level	

BFS Algorithm
•  BFS(V,Adj,s)

level={s: 0}; parent = {s: None}; i=1
frontier=[s] #previous level, i-1
while frontier

next=[] #next level, i
for u in frontier

for v in Adj[u]
 if v not in level #not yet seen

 level[v] = i #level of u+1
 parent[v] = u
 next.append(v)	

frontier = next
i += 1	

BFS Analysis: Runtime
•  Naïve analysis: outer loop |V| * inner loop |V|
•  Vertex v appears at the frontier at most once

  Since then it has a level
  And nodes with a level aren’t added again
  Total time spent adding nodes to frontier O(n)

•  Adj[v] only scanned once
  Just when v is in frontier
  Total time ∑v|| Adj[v] ||

•  This sum counts each “outgoing” edge
•  So O(m) time spend scanning adjacency lists

•  Total: O(m+n) time --- “Linear time”
  For sparse graphs |V|+|E| is much better than |V|2

BFS Analysis: Correctness

•  Claim: If there is a path of L edges from s to v,
then v is added to next when i=L or before

•  Proof: induction
  Base case: s is added before setting i=1
  Inductive step when i=L:

•  Consider path of length L from s to v
•  This must contain: (1) a path of length L-1 from s to u
•  (2) and an edge (u,v) from u to v

  By inductive hypothesis, u was added to next
when i=L-1 or before
•  If v has not already been inserted in next before i=L,

then it gets added during the scan of Adj[u] at i=L
  So it happens when i=L or before. QED

i.e. why are all nodes reachable from s explored?
(we’ll actually prove a stronger claim)

Corrollary: BFSShortest Paths

•  From correctness analysis, conclude more:
  Level[v] is length of shortest sv path

•  Parent pointers form a shortest paths tree
  i.e. the union of shortest paths to all vertices

•  To find shortest path from s to v
  Follow parent pointers from v backwards
 Will end up at s

Depth First Search (DFS)

DFS Algorithm Outline

•  Explore a maze
  Follow path until you get stuck
  Backtrack along breadcrumbs till find new exit
  i.e. recursively explore

DFS Algorithm

•  parent = {s: None}
•  call DFS-visit (V, Adj, s)

def DFS-visit (V, Adj, u)
for v in Adj[u]

if v not in parent #not yet seen
parent[v] = u
DFS-visit (V, Adj, v) #recurse!

DFS example run (starting from s)

s	
 1	
 (in	
 tree)	

2	
 (in	
 tree)	

3	
 (in	
 tree)	

5	
 (forw
ard	
 edge)	

a	

b	
 c	

s	

a	

b	
 c	

d	

7	
 (cross	
 edge)	

d	

DFS Runtime Analysis

•  Quite similar to BFS
•  DFS-visit only called once per vertex v

  Since next time v is in parent set

•  Edge list of v scanned only once (in that call)
•  So time in DFS-visit is:

  1 per vertex + 1 per edge
•  So time is O(n+m)

DFS Correctness?
•  Trickier than BFS
•  Can use induction on length of shortest path from

starting vertex
  Inductive Hypothesis:

“each vertex at distance k is visited (eventually)”
  Induction Step:

•  Suppose vertex v at distance k.
  Then some u at shortest distance k-1 with edge (u,v)
  Can decompose into su at shortest distance k-1, and (u,v)

•  By inductive hypothesis: u is visited (eventually)
•  By algorithm: every edge out of u is checked

  If v wasn’t previously visited, it gets visited from u (eventually)

Edge Classification

•  Tree edge used to get to new child
•  Back edge leads from node to ancestor in tree
•  Forward edge leads to descendant in tree
•  Cross edge leads to a different subtree
•  To label what edge is of what type, keep global

time counter and store interval during which
vertex is on recursion stack

Cross	
 edge	
 Forward	
 edge	

Back	
 edge	

tree	
 edge	

BFS vs. DFS

v	

The ‘frontier’ of BFS exploration

a

c v x z

s d f

1

1
2

2

2 3

3
0

s	

a	

x	

z	

d	

c	

f	

The	
 only	
 edges	
 	

not	
 traversed	
 by	
 BFS	
 	

link	
 verHces	
 	

within	
 the	
 same	
 level	

The tree of DFS exploration

s	
 1	
 (in	
 tree)	

2	
 (in	
 tree)	

3	
 (in	
 tree)	

5	
 (forw
ard	
 edge)	

a	

b	
 c	

s	

a	

b	
 c	

d	

7	
 (cross	
 edge)	

d	

BFS/DFS Algorithm Summary
•  Maintain “todo list” of vertices to be scanned

•  Until list is empty
  Take a vertex v from front of list
 Mark it scanned
  Examine all outgoing edges (v,u)
  If u not marked, add to the todo list

•  BFS: add to end of todo list
•  DFS: add to front of todo list

(queue: FIFO)
 (recursion stack: LIFO)

Data structures: Queues and Stacks

•  BFS queue is explicit
  Created in pieces
  (level 0 vertices) . (level 1 vertices) . (level 2 vert…
  the frontier at iteration i is piece i of vertices in queue

•  DFS stack is implicit
  It’s the call stack of the python interpreter
  From v, recurse on one child at a time
  But same order if put all children on stack, then pull

off (and recurse) one at a time

Runtime Summary
•  Each vertex scanned once

  When scanned, marked
  If marked, not (re)added to todo list
  Constant work per vertex

•  Removing from queue
•  Marking

  O(n) total
•  Each edge scanned once

  When tail vertex of edge is scanned
  Constant work per edge (checking mark on head)
  O(m) total

•  In all, O(n+m), linear in the ‘size’ of the graph

Back to our game graphs

So, how do we solve
 the 2x2 Rubik’s cube?

Searching for a solution path

•  Graph algorithms allow us explore space
– Nodes: configurations
– Edges: moves between them
– Paths to ‘solved’ configuration: solutions

1 turn
6 neighbors

27 two-away

How big is the space?

Tradeoffs and Applications

•  BFS:
  Solving Rubik’s cube?
  BFS gives shortest solution

•  DFS:
  Robot exploring a building?
  Robot can trace out the exploration path
  Just drops markers behind

Unit #4 Overview: Searching
Today: Introduction to Games and Graphs
•  Rubik’s cube, Pocket cube, Game space
•  Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis
•  Breadth First Search, Depth First Search
•  Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world
•  Network/node properties, metrics, motifs, clusters
•  Dynamic processes, epidemics, growth, resilience

Unit #4 – Games, Graphs, Searching, Networks

41

