6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHH

EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 12 — Graph Algorithms

Prof. Manolis Kellis
CLRS 22.2-22.3

Combinatorics

Ponytail No ponytail

Beard

No Beard

‘Piotr ‘ Manolis

Unit #4 — Games, Graphs, Searching, Networks

Unit Pset Week |Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 | 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar 01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting Ill: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1] Quiz 1in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11] Searching |: Graph Representation, Depth-1st Search 11]Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching II: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths II: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 | 16| Shortest Paths Ill: Dijkstra 16 |Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr 07 | 17| Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 | 18] DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 19| DP II: Shortest Paths, Genome sequence alignment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - |No recitation
Thu Apr 21 | 20| DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21| DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22] Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |[Due: Fri5/6 13 |Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15 |Finals week | Q3| Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Unit #4 Overview: Searching

Today: Introduction to Games and Graphs

* Rubik’s cube, Pocket cube, Game space

* Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis

* Breadth First Search, Depth First Search

* Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world

* Network/node properties, metrics, motifs, clusters

* Dynamic processes, epidemics, growth, resilience

Last time: Games and Graphs

Pocket Cube

2 x 2 x 2 Rubik’s cube
Start with any colors

Moves are quarter
turns of any face

“Solve” by making
each side one color

Searching for a solution path

27 two-away X
6 neighbors ‘j

1 turn

How big 1s the space?

* Graph algorithms allow us explore space
— Nodes: configurations
— Edges: moves between them

— Paths to ‘solved’ configuration: solutions

« G=(V,E)
Gl‘aphs e V aset of vertices

= Usually number denoted by n
« EC V x V asetof edges (pairs of vertices)

= Usually number denoted by m
= Note m <n(n-1) = O(n?)

Undirected example Directed example

(@) Q, o

() O (v) ()
« V={a,b,c,d}
- V={ab,c}

+ E={{ab}, {a,c}, {b,c},
{b,d}? {c,d}?c) * E={(a,c), (a,b) (b,c), (c,b)}

Graph Representation

* Adjacency lists

a

b_

—{c[{~{o]]
bl

C

* Adjacency matrix

1 1
0 1
1 0

e Incidence lists

a

b_

HETHED
_,| b.c) |/ ‘

C

_,l(c,b) ‘/ ‘

* Implicit representation

Neighbors(a) =2 [c,b] a

Neighbors(b) = [b]

Neighbors(c) = [b]

Today: Searching graphs

(QJ22)22)22)))

Searching Graph

* We want to get from current Rubik state to
“solved” state

* How do we explore?

Breadth First Search

start with vertex v

list all 1ts neighbors (distance 1)
then all their neighbors (distance 2)
etc. .

v/ \|/

e

algorithm starting at s:
= define frontier F
* initially F={s}

TIN7INTIVIN

frontier
» repeat F=all neighbors of vertices in F

= until all vertices found

Depth First Search

Like exploring a maze

From current vertex, move to another

Until you get stuck

Then backtrack till you find a new place to

explore

* Exploring a maze

e

=

e “left-hand” rule

-

T‘__"

P

How to handle cycles: BES/DFS

What happens if unknowingly revisit a vertex?
= Will eventually happen if graph contains a cycle

BFS: get wrong notion of distance
DFS: may get in circles

Solution: mark vertices
= BFS: if you’ve seen it before, 1ignore
= DFS: 1if you’ve seen it before, back up

Breadth First Search (BFS)

BFS algorithm outline

e Initial vertex s
= [evel O

 Fori=1....
grow level 1

Level 3
* Find all neighbors of level 1-1 \
vertices \

" (except those already seen)

m j.e. level 1 contains vertices

reachable via a path of 1 edges
and no fewer

BFS example

BFS algorithm outline

e Initial vertex s
" [evel 0

 Fori=1,...
grow level 1

* Find all neighbors of level 1-1
= (except those already seen)

= 1.e. level 1 contains vertices X
reachable via a path of 1 edges Level 2
and no fewer Level 1

* Where can the other edges of the graph be?

* They cannot jump a layer (otherwise v would be 1n Level 2)
= But they can be between nodes 1n same or adjacent levels

The ‘frontier’ of BFS exploration

\\ The only edges

@ " @—<(M: nottraversed by BFS
@ﬁi " i link vertices

(x) I

© 7—(: within the same level

BFS Algorithm

. BFS(V,Adi,s)
level={s: 0}; parent = {s: None}; 1=1

frontier=[s] #previous level, 1-1
while frontier
next=|] #next level, 1
for u n frontier
for v in Adj[u]
1f v not 1n level #not yet seen
level[v] =1 #level of u+1
parent[v] =u
next.append(v)

frontier = next
1+=1

BFS Analysis: Runtime

Naive analysis: outer loop |V| * 1nner loop |V|

Vertex v appears at the frontier at most once
* Since then 1t has a level
* And nodes with a level aren’t added again
» Total time spent adding nodes to frontier O(n)

Adj[v] only scanned once

» Just when v 1s in frontier
= Total time) Adj[V]|

* This sum counts each “outgoing” edge
* So O(m) time spend scanning adjacency lists

Total: O(m+n) time --- “Linear time”
» For sparse graphs |V|+|E| is much better than |V|?

BFS Analysis: Correctness

1.e. why are all nodes reachable from s explored?
(we’ll actually prove a stronger claim)

* Claim: If there 1s a path of L edges from s to v,
then v 1s added to next when 1=L or before

* Proof: induction
= Base case: s 1s added before setting 1=1

* Inductive step when i=L:
* Consider path of length L from s to v
* This must contain: (1) a path of length L-1 from s to u
. (2) and an edge (u,v) fromuto v
* By inductive hypothesis, u was added to next
when 1=L-1 or before

* If v has not already been inserted in next before i=L,
then it gets added during the scan of Adj[u] at 1=L

» So it happens when 1=L or before. QED

Corrollary: BFS->Shortest Paths

* From correctness analysis, conclude more:
» Level[v] is length of shortest s=>v path

* Parent pointers form a shortest paths tree

" 1.¢. the union of shortest paths to all vertices

* To find shortest path from s to v
» Follow parent pointers from v backwards
= Will end up at s

Depth First Search (DFES)

DES Algorithm Outline

* Explore a maze
» Follow path until you get stuck
» Backtrack along breadcrumbs till find new exit

" 1.e. recursively explore

DFS Algorithm

* parent = {s: None}
 call DFS-visit (V, Adj, s)

def DFS-visit (V, Adj, u)
for v in Adj[u]
if v not 1n parent #not yet seen
parent|v] =u
DFS-visit (V, Adj, v) #recurse!

DFS example run (starting from s)

(9941 Ul) ¢

DFS Runtime Analysis

Quite similar to BFS

DFS-visit only called once per vertex v

» Since next time v 1s 1n parent set
Edge list of v scanned only once (in that call)
So time 1n DFS-visit 1s:

"] per vertex + 1 per edge
So time 1s O(n+m)

DFES Correctness?

 Trickier than BFS

* Can use induction on length of shortest path from
starting vertex

* Inductive Hypothesis:
“each vertex at distance k 1s visited (eventually)”

* Induction Step:

* Suppose vertex v at distance k.
= Then some u at shortest distance k-1 with edge (u,v)
» Can decompose into s=>u at shortest distance k-1, and (u,v)
* By inductive hypothesis: u is visited (eventually)
* By algorithm: every edge out of u is checked
= [f v wasn’t previously visited, it gets visited from u (eventually)

Edge Classification

Tree edge used to get to new child

Back edge leads from node to ancestor 1n tree
Forward edge leads to descendant in tree
Cross edge leads to a different subtree

To label what edge 1s of what type, keep global
time counter and store interval during which
vertex 1s on recursion stack

tree edge _ _)7‘.
— ———— - = o~ —
_———-— P d < =~ ~
Back edge _” T~~~
-~ ~ o~
Cross edge Forward edge

BEFS vs. DES

The ‘frontier’ of BFS exploration

\\ The only edges

@ " @—<(M: nottraversed by BFS
@ﬁi " i link vertices

(x) I

© 7—(: within the same level

The tree of DFS exploration

(9941 Ul) ¢

BFS/DFS Algorithm Summary

e Maintain “todo list” of vertices to be scanned

* Until list 1s empty
» Take a vertex v from front of list
* Mark 1t scanned
* Examine all outgoing edges (v,u)
= [f u not marked, add to the todo list

e BFS: add to end of todo list (queue: FIFO)
« DFS: add to front of todo list (recursion stack: LIFO)

Data structures: Queues and Stacks

* BFS queue 1s explicit

* Created 1n pieces

" (level 0 vertices) . (level 1 vertices) . (level 2 vert...

= the frontier at iteration i is piece i of vertices in queue
* DFS stack 1s implicit

= [t’s the call stack of the python interpreter

* From v, recurse on one child at a time

* But same order if put all children on stack, then pull
off (and recurse) one at a time

Runtime Summary

* Each vertex scanned once
= When scanned, marked
* [f marked, not (re)added to todo list
= Constant work per vertex
* Removing from queue
* Marking
= O(n) total
* Each edge scanned once
= When tail vertex of edge is scanned
* Constant work per edge (checking mark on head)
= O(m) total
* In all, O(n+m), linear in the ‘size’ of the graph

Back to our game graphs

So, how do we solve
the 2x2 Rubik’s cube?

Searching for a solution path

27 two-away X
6 neighbors ‘j

1 turn

How big 1s the space?

* Graph algorithms allow us explore space
— Nodes: configurations
— Edges: moves between them

— Paths to ‘solved’ configuration: solutions

Tradeofts and Applications

* BFS:
* Solving Rubik’s cube?
= BFS gives shortest solution

* DFS:
= Robot exploring a building?
= Robot can trace out the exploration path

= Just drops markers behind

Unit #4 Overview: Searching

Today: Introduction to Games and Graphs

* Rubik’s cube, Pocket cube, Game space

* Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis

* Breadth First Search, Depth First Search

* Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world

* Network/node properties, metrics, motifs, clusters

* Dynamic processes, epidemics, growth, resilience

Unit #4 — Games, Graphs, Searching, Networks

Unit Pset Week |Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 | 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar 01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting Ill: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1] Quiz 1in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11] Searching |: Graph Representation, Depth-1st Search 11]Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching II: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths II: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 | 16| Shortest Paths Ill: Dijkstra 16 |Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr 07 | 17| Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 | 18] DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 19| DP II: Shortest Paths, Genome sequence alignment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - |No recitation
Thu Apr 21 | 20| DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21| DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22] Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |[Due: Fri5/6 13 |Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15 |Finals week | Q3| Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

