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Unit #4 Overview: Searching 
Today: Introduction to Games and Graphs 
•  Rubik’s cube, Pocket cube, Game space 
•  Graph definitions, representation, searching 
Tuesday: Graph algorithms and analysis 
•  Breadth First Search, Depth First Search 
•  Queues, Stacks, Augmentation, Topological sort 
Thursday: Networks in biology and real world 
•  Network/node properties, metrics, motifs, clusters 
•  Dynamic processes, epidemics, growth, resilience 



Last time: Games and Graphs 



Pocket Cube 

•  2 × 2 × 2 Rubik’s cube 
•  Start with any colors 
•  Moves are quarter 

turns of any face 
•  “Solve” by making 

each side one color 



Searching for a solution path 

•  Graph algorithms allow us explore space 
– Nodes: configurations 
– Edges: moves between them 
– Paths to ‘solved’ configuration: solutions 

1 turn 
6 neighbors 

27 two-away 

How big is the space? 



Graphs 

•  V={a,b,c,d} 
•  E={{a,b}, {a,c}, {b,c}, 

{b,d}, {c,d}} 

•  V = {a,b,c} 
•  E = {(a,c), (a,b) (b,c), (c,b)}  

a 

c d
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•  G=(V,E) 
•  V a set of vertices 

  Usually number denoted by n 

•  E ⊆ V × V a set of edges (pairs of vertices) 
  Usually number denoted by m 
  Note m ≤ n(n-1) = O(n2) 

Undirected example Directed example 



Graph Representation 
•  Adjacency lists •  Incidence lists 

•  Adjacency matrix •  Implicit representation 
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Today: Searching graphs 
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Searching Graph 

•  We want to get from current Rubik state to 
“solved” state 

•  How do we explore? 



Breadth First Search 
•  start with vertex v 
•  list all its neighbors (distance 1) 
•  then all their neighbors (distance 2) 
•  etc. 

•  algorithm starting at s: 
  define frontier F 
  initially F={s}  
  repeat F=all neighbors of vertices in F 
  until all vertices found 



Depth First Search 
•  Like exploring a maze 
•  From current vertex, move to another 
•  Until you get stuck 
•  Then backtrack till you find a new place to 

explore 

•  “left-hand” rule •  Exploring a maze 



How to handle cycles: BFS/DFS 

•  What happens if unknowingly revisit a vertex? 
 Will eventually happen if graph contains a cycle 

•  BFS: get wrong notion of distance 
•  DFS: may get in circles 
•  Solution: mark vertices 

  BFS: if you’ve seen it before, ignore 
 DFS: if you’ve seen it before, back up 



Breadth First Search (BFS) 



BFS algorithm outline 
•  Initial vertex s 

  Level 0 

•  For i=1,…  
 grow level i 
  Find all neighbors of level i-1 

vertices  
  (except those already seen) 
  i.e. level i contains vertices 

reachable via a path of i edges 
and no fewer 
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BFS example 
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BFS algorithm outline 
•  Initial vertex s 

  Level 0 
•  For i=1,…  

 grow level i 
  Find all neighbors of level i-1  
  (except those already seen) 
  i.e. level i contains vertices  

reachable via a path of i edges  
and no fewer 

•  Where can the other edges of the graph be? 
  They cannot jump a layer (otherwise v would be in Level 2) 
  But they can be between nodes in same or adjacent levels 
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The ‘frontier’ of BFS exploration 
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BFS Algorithm 
•  BFS(V,Adj,s) 

level={s: 0}; parent = {s: None}; i=1 
frontier=[s]                         #previous level, i-1 
while frontier 

next=[]                                   #next level, i 
for u in frontier 

for v in Adj[u] 
 if v not in level      #not yet seen 

 level[v] = i           #level of u+1 
 parent[v] = u 
 next.append(v)	
  

frontier = next 
i += 1	
  



BFS Analysis: Runtime 
•  Naïve analysis: outer loop |V| * inner loop |V| 
•  Vertex v appears at the frontier at most once 

  Since then it has a level 
  And nodes with a level aren’t added again 
  Total time spent adding nodes to frontier O(n) 

•  Adj[v] only scanned once 
  Just when v is in frontier 
  Total time ∑v|| Adj[v] ||  

•  This sum counts each “outgoing” edge 
•  So O(m) time spend scanning adjacency lists 

•  Total: O(m+n) time --- “Linear time” 
  For sparse graphs |V|+|E| is much better than |V|2 



BFS Analysis: Correctness 

•  Claim: If there is a path of L edges from s to v, 
then v is added to next when i=L or before 

•  Proof: induction 
  Base case: s is added before setting i=1 
  Inductive step when i=L:  

•  Consider path of length L from s to v 
•  This must contain: (1) a path of length L-1 from s to u 
•  (2) and an edge (u,v) from u to v 

  By inductive hypothesis, u was added to next  
when i=L-1 or before 
•  If v has not already been inserted in next before i=L,  

then it gets added during the scan of Adj[u] at i=L 
  So it happens when i=L or before. QED 

i.e. why are all nodes reachable from s explored? 
(we’ll actually prove a stronger claim) 



Corrollary: BFSShortest Paths 

•  From correctness analysis, conclude more: 
  Level[v] is length of shortest sv path 

•  Parent pointers form a shortest paths tree 
  i.e. the union of shortest paths to all vertices 

•  To find shortest path from s to v 
  Follow parent pointers from v backwards  
 Will end up at s 



Depth First Search (DFS) 



DFS Algorithm Outline 

•  Explore a maze 
  Follow path until you get stuck 
  Backtrack along breadcrumbs till find new exit 
  i.e. recursively explore 



DFS Algorithm 

•  parent = {s: None} 
•  call DFS-visit (V, Adj, s) 

def DFS-visit (V, Adj, u) 
for v in Adj[u] 

if v not in parent          #not yet seen 
parent[v] = u 
DFS-visit (V, Adj, v)       #recurse! 



DFS example run (starting from s) 
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DFS Runtime Analysis 

•  Quite similar to BFS 
•  DFS-visit only called once per vertex v 

  Since next time v is in parent set 

•  Edge list of v scanned only once (in that call) 
•  So time in DFS-visit is: 

  1 per vertex + 1 per edge 
•  So time is O(n+m) 



DFS Correctness? 
•  Trickier than BFS 
•  Can use induction on length of shortest path from 

starting vertex 
  Inductive Hypothesis:  

“each vertex at distance k is visited (eventually)” 
  Induction Step:  

•  Suppose vertex v at distance k.  
  Then some u at shortest distance k-1 with edge (u,v) 
  Can decompose into su at shortest distance k-1, and (u,v) 

•  By inductive hypothesis: u is visited (eventually) 
•  By algorithm: every edge out of u is checked 

  If v wasn’t previously visited, it gets visited from u (eventually) 



Edge Classification 

•  Tree edge used to get to new child 
•  Back edge leads from node to ancestor in tree 
•  Forward edge leads to descendant in tree 
•  Cross edge leads to a different subtree 
•  To label what edge is of what type, keep global 

time counter and store interval during which 
vertex is on recursion stack 
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BFS vs. DFS 
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The ‘frontier’ of BFS exploration 
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The tree of DFS exploration 
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BFS/DFS Algorithm Summary 
•  Maintain “todo list” of vertices to be scanned 

•  Until list is empty 
  Take a vertex v from front of list 
 Mark it scanned 
  Examine all outgoing edges (v,u) 
  If u not marked, add to the todo list 

•  BFS: add to end of todo list  
•  DFS: add to front of todo list 

(queue: FIFO) 
 (recursion stack: LIFO) 



Data structures: Queues and Stacks 

•  BFS queue is explicit 
  Created in pieces 
  (level 0 vertices) . (level 1 vertices) . (level 2 vert… 
  the frontier at iteration i is piece i of vertices in queue 

•  DFS stack is implicit 
  It’s the call stack of the python interpreter 
  From v, recurse on one child at a time 
  But same order if put all children on stack, then pull 

off (and recurse) one at a time 



Runtime Summary 
•  Each vertex scanned once 

  When scanned, marked 
  If marked, not (re)added to todo list 
  Constant work per vertex 

•  Removing from queue 
•  Marking 

  O(n) total 
•  Each edge scanned once 

  When tail vertex of edge is scanned 
  Constant work per edge (checking mark on head) 
  O(m) total 

•  In all, O(n+m), linear in the ‘size’ of the graph 



Back to our game graphs 

So, how do we solve 
 the 2x2 Rubik’s cube? 



Searching for a solution path 

•  Graph algorithms allow us explore space 
– Nodes: configurations 
– Edges: moves between them 
– Paths to ‘solved’ configuration: solutions 

1 turn 
6 neighbors 

27 two-away 

How big is the space? 



Tradeoffs and Applications 

•  BFS:  
  Solving Rubik’s cube? 
  BFS gives shortest solution 

•  DFS:  
  Robot exploring a building? 
  Robot can trace out the exploration path 
  Just drops markers behind 



Unit #4 Overview: Searching 
Today: Introduction to Games and Graphs 
•  Rubik’s cube, Pocket cube, Game space 
•  Graph definitions, representation, searching 
Tuesday: Graph algorithms and analysis 
•  Breadth First Search, Depth First Search 
•  Queues, Stacks, Augmentation, Topological sort 
Thursday: Networks in biology and real world 
•  Network/node properties, metrics, motifs, clusters 
•  Dynamic processes, epidemics, growth, resilience 
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