6.006- Introduction to
Algorithms

' HHHHHHH CCORMEM
EEEEEEEE .LEISERSON

RRRRRRRRRRRRRR

L_ecture 7

Prof. Manolis Kellis
CLRS: 114,17.

Unit #2 — Genomes, Hashing, and Dictionaries

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master T-heorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 |Q1]| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Unit #2: Hashing

« Last Tues: Genomes, Dictionaries, Hashing
— Intro, basic operations, collisions and chaining
— Simple uniform hashing assumption
« Last Thur: Faster hashing, hash functions
— Hash functions in practice: div/imult/python
— Faster hashing: Rolling Hash: O(n?)-=>0O(nlign)
— Faster comparison: Signatures: mismatch time
 Today: Space issues
— Dynamic resizing and amortized analysis
— Open addressing, deletions, and probing

— Advanced topics: universal hashing, fingerprints
3

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

dDynamic dictionaries: Resizing hash tables
dWhen to resize: insertions, deletions
Resizing operations, amortized analysis

dOpen addressing: Doing away w/ linked lists
dOperations: insertion, deletion
L Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chaining

JAdvanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing
L Fingerprinting, file signatures, false positives

Remember Hashing I and 11

Hashing and hash functions

» Humongous universe of keys - itty bitty little space
Hash table as dictionary

» |Insert/Search/Delete

Collisions by chaining

= Build a linked list in each bucket

= Operation time is length of list

Simple Uniform Hashing Assumption

= Every item to uniform random bucket

* nitems in size m table - average length n/m = a
Speeding up hashing

* Rolling Hash: fast sequence of hash’s

= Signatures: fast comparison, avoid frequent mismatches
Comparing genomes

. O(n4)eobinsearchL(n3|gn)eohash(nzlgn)eOroll/sign(nlgn)

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

» Dynamic dictionaries: Resizing hash tables
dWhen to resize: insertions, deletions
Resizing operations, amortized analysis

dOpen addressing: Doing away w/ linked lists
dOperations: insertion, deletion

L Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chaining

JAdvanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing

L Fingerprinting, file signatures, false positives

Dynamic Dictionaries

In substring application, inserted all at once
then scanned

More generally, arbitrary sequence of insert,
delete, find

How do we know how big the table will get?

What if we guess wrong?
too small =» load high, operations too slow
too large = high initialization cost, consumes space,
potentially more cache-misses

Want m=0(n) at all times

Solution: Resize when needed

Start table at small constant size
When table too full, make 1t bigger

When table too empty, make 1t smaller
How?

= Build a whole new hash table and insert items
* Pick new hash ‘seed’, recompute all hashes
= Recreate new linked lists

* Time spent to rebuild:
(new-size) + #hashes x (HashTime)

When to resize?

* Approach 1: whenever n > m, rebuild table to new

S1ZC a factor of

= Sequence of n inserts (HaShTin;e})l is
suppressed here

» Each increases n past m, causes rebuild
= Total work: O(1 +2 + ... + n) = O(n?) /

* Approach 2: Whenever n > 2m, rebuild tdble to new
S1Z€
= Costly inserts: insert 2! for all i:
These cost: ©(1 +2+4 + ... +n) = O(n)
= All other inserts take O(1) time — why?
* Inserting n items takes O(n) time
= Keeps m a power of 2 --- good for mod

Amortized Analysis

If a sequence of n operations takes time T, then
cach operation has amortized cost T/n

» [Like amortizing a loan: payment per month

Rebuilding when n > 2m =2 some ops are very
slow

* ®(n) for insertion that causes last resize
But on average, fast
" O(1) amortized cost per operation

Often, only care about total runtime
" So averaging 1s fine

Insertions+Deletions?

* Rebuild table to new size when n <m?
= Same as bad insert: O(n?) work

e Rebuild when n<m/2?

» Makes a sequence of deletes fast
* What about an arbitrary sequence of inserts/deletes?
* Suppose we have just rebuilt: m=n

» Next rebuild a grow = at least m more inserts are
needed before growing table

* Amortized cost O(2m / m)) = O(1)
Cost to rebuild — " Paid after m insertions

e Next rebuild a shrink = at least m/2 more deletes are
needed before shrinking

* Amortized cost O(m/2 / (m/2)) = O(1)
Cost to rebuild — Paid after m/2 deletions

Putting the two together

* Algorithm
= Keep m a power of 2 (good for mod)
" Grow (double m) whenn>m
» Shrink (halve m) when n < m/4
* Analysis
" Just after rebuild: n=m/2

» Next rebuild a grow = at least m/2 more inserts
* Amortized cost O(2m / (m/2)) = O(1)

= Next rebuild a shrink = at least m/4 more deletes
* Amortized cost O(m/2 / (m/4)) = O(1)

Summary

* Arbitrary sequence of insert/delete/find

* O(1) amortized time per operation

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

v Dynamic dictionaries: Resizing hash tables
v When to resize: insertions, deletions
v Resizing operations, amortized analysis

» Open addressing: Doing away w/ linked lists
dOperations: insertion, deletion
L Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chaining

JAdvanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing
L Fingerprinting, file signatures, false positives

The trouble with chaining

h(k1)

k1

iteml

h(k3)

k3

item3

“my heart is sick
of being in chains”
-- Tori Amos ‘92

“our people are sick
of being in chains”
Tunisia, Egypt, Libya ‘10

h(k2) = h(k4) >

k2

k4

item2

item4

* Hash table just for indexing, all storage in linked lists

* In practice: Bad locality of reference for table items

* Would like to store only table 1n memory, with all items

Open Addressing

 Different technique for dealing with collisions;
does not use linked list

* Instead: if bucket occupied, find other bucket
(need m>n)

* For insert: probe a sequence of buckets until
find empty one!

* h(x) specifies probe sequence for item x

- Ideally, sequence visits all buckets

" h: U’
S \ Bucket
UniversSe of keys Probe number

Open Addressing (example)

NIL 1
NIL 2
other item h(k,3) collision
NIL
NIL
other item h(k,1) collision
k NIL
NIL
item, h(k,4) free spot!
NIL
NIL
other item h(k,2) collision
NIL
NIL
NIL m-1

Operations

* Insert
* Probe till find empty bucket, put item there

* Search
» Probe till find 1item (return with success)

* Or find empty bucket (return with failure)

* Because 1f item 1nserted, would use that empty bucket

e Delete

Problem with Deletion

* Consider a sequence
" Insert x

" Inserty
* suppose probe sequence for y passes x bucket
* store y elsewhere

» Delete x (Ieaving hole)
= Search fory

* Probe sequence hits x bucket
* Bucket now empty
* Conclude y not in table (else y would be there)

Solution for deletion

* When delete x

" [eave 1t in bucket
* But mark 1t deleted --- store “tombstone™ (DEL)

 Future search for x sees x 1s deleted

= Returns “x not found”

* “Insert z” probes may hit x bucket
= Since x 1s deleted, overwrite with z

» So keeping deleted items doesn’t waste space

Open Addressing (example after del 2)

NIL 1
DEL 2

other item h(k,3) collision

NIL

NIL
other item h(k,1) collision
k NIL
DEL
item, h(k,4) free spot!
NIL
NIL
DEL
NIL
NIL
NIL m-1

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

v Dynamic dictionaries: Resizing hash tables
v When to resize: insertions, deletions
v Resizing operations, amortized analysis

v Open addressing: Doing away w/ linked lists
v Operations: insertion, deletion
» Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chaining

JAdvanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing
L Fingerprinting, file signatures, false positives

Linear probing

* h(k,1) =h’(k) + 1 for ordinary hash h’

* Problem: creates “clusters”, 1.€. sequences of full
buckets

= exactly like parking

" Big clusters are hit by lots of new items
* They get put at end of cluster

* Big cluster gets bigger: “rich get richer” phenomenon

= S

if h(k,1) is any of
these, the cluster —
will get bigger

cluster

I.e. the bigger the cluster is, the
more likely it is to grow larger,
since there are more opportunities

: m-1
to make it larger...

Linear probing

h(k,1) = h’(k) + 1 for ordinary hash h’

Problem: creates “clusters”, 1.e. sequences of full
buckets

= exactly like parking

" Big clusters are hit by lots of new items
* They get put at end of cluster

* Big cluster gets bigger: “rich get richer” phenomenon
For 0.1 <a <0.99, cluster size ®(log n)

Wrecks our constant-time operations

Double Hashing

* Two ordinary hash functions f(k), g(k)
* Probe sequence h(k,1) = f(k) + 1-g(k) mod m
* If g(k) relatively prime to m, hits all buckets
» E.g., 1f m=2%, make g(k) odd
* The same bucket 1s hit twice 1f for some 1,J:
f(k) + 1-g(k) = f(k) + j-g(k) mod m
= irg(k) =j-g(k) (mod m)
= (i-j)-g(k) = 0 (mod m)
- m and g(k) not relatively prime

(otherwise m should divide 1-j, which 1s not possible for 1, j<m)

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

v Dynamic dictionaries: Resizing hash tables
v When to resize: insertions, deletions
v Resizing operations, amortized analysis

v Open addressing: Doing away w/ linked lists
v Operations: insertion, deletion
v Probing: linear probing, double hashing
» Performance analysis: UHA, open vs. chaining

JAdvanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing
L Fingerprinting, file signatures, false positives

Performance of Open Addressing

Operation time 1s length of probe sequence
How long 1s 1t?
In general, hard to answer.

Introducing...
“Uniform Hashing Assumption” (UHA):

" Probe sequence 1s a uniform random permutation
of [1..m]

" (N.B. this 1s different to the simple uniform
hashing assumption (SUHA))

Analysis under UHA

* Suppose:
" asize-m table contains n 1tems
" we are using open addressing
" we are about to insert new item

* Probability first probe successful? P(free slot)

Freeslots — 1 — n
=

Total slots ——
Why? From UHA, probe sequence random permutation
Hence, first position probed random
m-n out of the m slots are unoccupied

Analysis under UHA: 2" probe

* If first probe unsuccessful, probability second
prob successful?

Freeslots — Tl — 1N S m — n

> =p
Total slots —— 77 — 1 m
Why?
* From UHA, probe sequence random permutation
*Hence, first probed slot 1s random; the second probed
slot 1s random among the remaining slots, etc.
*Since first probe unsuccessful, 1t probed an occupied slot

*Hence, the second probe 1s choosing uniformly from m-1
slots, among which m-n are still clean

Analysis under UHA: 3" probe

o If first two probes unsuccessful, probability

third prob successtul? 1o

Freeslots —> 1, — . m—n

Totalslots — m —2 = m —F =P

. ... >p >p g
a=n/m=90%

=> every trial succeeds with probability >p P

expected number of probes till success? < %}z] - -

e.g. 1f 0=90%, expected number of probes 1s at most 10

Expected number of probes

Expected number of probes

Y

188 r

=]
=]

88

A r

68 -

o8

48

38

28

18

=]

|—I.

1 — oy

Load factor (n/m

Open addressing sensitive to o
As o =2 1, access time shoots up

I I
8.1 a.2

Open Addressing vs. Chaining

* Open addressing skips linked lists
= Saves space (of list pointers)

= Better locality of reference
* Array concentrated in m space
* So fewer main-memory accesses bring it to cache
* Linked list can wander all of memory

* Open addressing sensitive to o
= As a =2 1, access time shoots up
» Cannot allow o > 1

* Open addressing needs good hash to avoid
clustering

Today: Hashing 111: Space issues

Rev: Hash functs, chaining, SUHA, rolling, signatures

v Dynamic dictionaries: Resizing hash tables
v When to resize: insertions, deletions
v Resizing operations, amortized analysis

v Open addressing: Doing away w/ linked lists
v Operations: insertion, deletion
v Probing: linear probing, double hashing
v Performance analysis: UHA, open vs. chaining

» Advanced topics: Randomized algorithms (shht!)
QUniversal hashing, perfect hashing
L Fingerprinting, file signatures, false positives

Done with unit #2: Hashing

« Last Tues: Genomes, Dictionaries, Hashing
— Intro, basic operations, collisions and chaining
— Simple uniform hashing assumption
« Last Thur: Faster hashing, hash functions
— Hash functions in practice: div/imult/python
— Faster hashing: Rolling Hash: O(n?)-=>0O(nign)
— Faster comparison: Signatures: mismatch time
 Today: Space issues
— Dynamic resizing and amortized analysis
— Open addressing, deletions, and probing

— Advanced topics: universal hashing, fingerprints
46

Next week: Sorting

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master T-heorem, Exampl?
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar08 |10 Sortmﬁ [Il: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 |Q1]| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

