
6.006- Introduction to Algorithms

Lecture 3
Prof. Piotr Indyk

Overview

•  Runway reservation system:
– Definition
– How to solve with lists

•  Binary Search Trees
– Operations

Readings: CLRS 10, 12.1-3

10

12 5

1 6

7

http://izismile.com/tags/Gibraltar/

Runway reservation system

•  Problem definition:
– Single (busy) runway
– Reservations for landings

• maintain a set of future landing times
•  a new request to land at time t
•  add t to the set if no other landings are

scheduled within < 3 minutes from t
• when a plane lands, removed from the set

Runway reservation system

•  Example

–  R = (41, 46, 49.1, 56)
–  requests for time:

•  44 => reject (46 in R)
•  53 => ok
•  20 => not allowed (already past)

•  Ideas for efficient implementation ?

37
(now)

41 46 49.1 56
time (mins)

Some options:

•  Keep R as an unsorted list
–  Bad: takes linear time to search for collisions
–  Good: can insert t in O(1) time

•  Keep R as a sorted array
 (resort after each insertion)

–  Bad: takes “a lot of” time to insert elements
–  Good: 3 minute check can be done in O(log n) time:

–  Using binary search, find* the smallest i such
that R[i]>=t (next larger element)

–  Compare t to R[i] and R[i-1]
Need: fast insertion into sorted list
(sort of)

Binary Search Trees

•  Simple and natural data structures
•  Bulding blocks for

10

12 5

1 6

7

(a,b) tree, 2-3 tree, 2-3-4 tree, AA tree, AVL tree, B tree, B+ tree, B* tree, Cartesian tree, Dancing tree, H tree, Leftist tree, Red-black tree, Scapegoat tree, Splay tree, T tree, Tango tree, Top tree, UB tree,…

Binary Search Trees (BSTs)

•  Each node x has:
– key[x]
– Pointers:

• left[x]
• right[x]
• p[x]

10

12 5

1 6

7

Binary Search Trees (BSTs)

•  Property: for any node x:
– For all nodes y in the

left subtree of x:
key[y] ≤ key[x]

– For all nodes y in the
right subtree of x:

 key[y] ≥ key[x]

•  How are BSTs made ?

10

12 5

1 6

7

Growing BSTs

•  Insert 10
•  Insert 12
•  Insert 5
•  Insert 1
•  Insert 6
•  Insert 7

10

12 5

1 6

7

root

BST as a data structure

•  Operations:
–  insert(k): inserts key k
–  search(k): finds the node

containing key k (if it exists)
–  next-larger(x): finds the next

element after element x
–  findmin(x): finds the minimum

of the tree rooted at x
–  delete(x): deletes node x

37
(now)

41 46 49.1 56
time (mins)

Search

Search(k):
•  Recurse left or right until

you find k, or get NIL

Search(7)
Search(8)

10

12 5

1 6

7

next-larger()

Next-larger

next-larger(x):
•  If right[x] ≠ NIL then
 return minimum(right[x])
•  Otherwise

y ← p[x]
While y≠NIL and x=right[y] do

•  x ← y
•  y ← p[y]

Return y

next-larger()
5

7

10

12 5

1 6

7

Minimum

Minimum(x)
•  While left[x]≠NIL do

 x ← left[x]
•  Return x

10

12 5

1 6

7

minimum() 5

Analysis

•  We have seen insertion, search,
minimum, etc.

•  How much time does any of
this take ?

•  Worst case: O(height)
 => height really important

•  After we insert n elements,
what is the worst possible BST
height ?

10

12 5

1 6

7

Analysis

•  n-1

•  So, still O(n) for the runway
reservation system operations

•  Next lecture: balanced BSTs
•  Readings: CLRS 13.1-2

1

5

6

7

10

12

