
6.006
Introduction	to	Algorithms

Lecture	2:	Peak	Finding
Prof.	Erik	Demaine

Today
• Peak	finding		(new	problem)

– 1D	algorithms
– 2D	algorithms

• Divide	&	conquer		(new	technique)

Finding	Water…
IN SPACE

• You	are	Geordi LaForge
• Trapped	on	alien	mountain	range
• Need	to	find	a	pool	where	water	
accumulates

• Can	teleport,	but	can’t	see http://en.wikipedia.org/wiki/File:GeordiLaForge.jpg

photo by Erik Demaine Banff, Canada

Finding	Water…
IN SPACE

• Problem: Find	a	local	minimum	or	maximum	
in	a	terrain	by	sampling

photo by Erik Demaine Banff, Canada

1D	Peak	Finding
• Given	an	array	 :

• is	a	peak if	it	is	not	smaller	than	its	
neighbor(s):

where	we	imagine

• Goal: Find	any peak

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

“Brute	Force”	Algorithm
• Test	all	elements	for	peakyness

for in :
if :

return

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

Algorithm	1½
•

– Global	maximum	is	a local	maximum

for in :
if :

return

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

Cleverer	Idea
• Look	at	any	element	 and
its	neighbors &	
– If	peak:	return	
– Otherwise:	locally	rising	on	some	side

• Must	be	a	peak	in	that	direction
• So	can	throw	away	rest	of	array,
leaving	ܣሾ: ݅ሿ or	ܣሾ݅ ൅ 1: ሿ

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

Where	to	Sample?
• Want	to	minimize	the	worst‐case	remaining	
elements	in	array
– Balance	 of	length	
with	 of	length	

–
– :	middle	element
– Reduce	 to	

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

Algorithm

if :
return

elif :
return peak1d

elif
return peak1d

1 2 6 5 3 7 4
0 1 2 3 4 5 6

:

Divide	&	Conquer
• General	design	technique:
1. Divide	input	into	part(s)
2. Conquer	each	part	

recursively
3. Combine	result(s)	to	solve	

original	problem

• 1D	peak:
1. One	half
2. Recurse
3. Return

Divide	&	Conquer	Analysis
• Recurrence for	time	
taken	by	problem	size	

1. Divide	input	into	part(s):
ଵ ଶ ௞

2. Conquer	each	part	
recursively

3. Combine	result(s)
to	solve	original	problem

ଵ ଶ
௞

combine	cost

divide	cost	

1D	Peak	Finding	Analysis
• Divide problem	into	1	problem	of	size	 ௡

ଶ
• Divide	cost:
• Combine	cost:
• Recurrence:

Solving	Recurrence
௡
ଶ
௡
ସ
௡
଼
௡
ଶೖ

௡
ଶౢౝ ೙

2D	Peak	Finding
• Given	 matrix
of	numbers

• Want	an	entry	not	
smaller	than	its	(up	to)	
4	neighbors:

2 1 2 1 1 1 1
8 9 8 0 5 3 0
9 0 6 0 4 6 4
7 6 3 1 3 2 3
9 8 9 3 2 4 8
7 2 5 1 4 0 3
9 3 5 2 4 9 8

൑
൒

Divide	&	Conquer	#0
• Looking	at	center	
element	doesn’t	split	
the	problem	into	
pieces…

2 1 2 1 1 1 1
8 9 8 0 5 3 0
9 0 6 0 4 6 4
7 6 3 1 3 2 3
9 8 9 3 2 4 8
7 2 5 1 4 0 3
9 3 5 2 4 9 8

Divide	&	Conquer	#½
• Consider	max	element	
in	each	column

• 1D	algorithm	would	
solve	max	array	in	

time
• But	 ଶ time	to	
compute	max	array 2 1 2 1 1 1 1

8 9 8 0 5 3 0
9 0 6 0 4 6 4
7 6 3 1 3 2 3
9 8 9 3 2 4 8
7 2 5 1 4 0 3
9 3 5 2 4 9 8

9 9 9 3 5 9 8

Divide	&	Conquer	#1
• Look	at	center	column
• Find	global	max	within
• If	peak:	return	it
• Else:

– Larger	left/right	neighbor
– Larger	max	in	that	column
– Recurse	in	left/right	half

• Base	case: 1	column
– Return	global	max	within

2 1 2 1 1 1 1
8 9 8 0 5 3 0
9 0 6 0 4 6 4
7 6 3 1 3 2 3
9 8 9 3 2 4 8
7 2 5 1 4 0 3
9 3 5 2 4 9 8

9 9 9 3 5 9 8

Analysis	#1
• time	to	find
max	in	column

• iterations
(like	binary	search)

• time	total

• Can	we	do	better?
2 1 2 1 1 1 1
8 9 8 0 5 3 0
9 0 6 0 4 6 4
7 6 3 1 3 2 3
9 8 9 3 2 4 8
7 2 5 1 4 0 3
9 3 5 2 4 9 8

Divide	&	Conquer	#2
• Look	at	boundary,
center	row,	and	center	
column	(window)

• Find	global	max	within
• If	it’s	a	peak:	return	it
• Else:

– Find	larger	neighbor
– Can’t	be	in	window
– Recurse	in	quadrant,	
including	green	boundary

22 11 22 11 11 11 11
88 99 88 00 55 33 00
99 00 66 00 44 66 44
77 66 33 11 33 22 33
99 88 99 33 22 44 88
77 22 55 11 44 00 33
99 33 55 22 44 99 88

00 00 00 00 00 00 00

00
00
00
00
00
00
00
00
00

00 00 00 00 00 00 00 00
00
00
00
00
00
00
00
00

Correctness
• Lemma: If	you	enter	a	
quadrant,	it	contains	a	
peak	of	the	overall	
array		[climb	up]

• Invariant: Maximum	
element	of	window	
never	decreases	as	we	
descend	in	recursion

• Theorem: Peak	in	
visited	quadrant	is	also	
peak	in	overall	array

22 11 22 11 11 11 11
88 99 88 00 55 33 00
99 00 66 00 44 66 44
77 66 33 11 33 22 33
99 88 99 33 22 44 88
77 22 55 11 44 00 33
99 33 55 22 44 99 88

00 00 00 00 00 00 00

00
00
00
00
00
00
00
00
00

00 00 00 00 00 00 00 00
00
00
00
00
00
00
00
00

Analysis	#2
• Reduce	 matrix	to

௡
ଶ

௡
ଶ
submatrix	in

time	(|window|)
௡
ଶ
௡
ସ

௡
ଶ

௡
଼

௡
ସ

௡
ଶ

௡
ସ

௡
ଶ

22 11 22 11 11 11 11
88 99 88 00 55 33 00
99 00 66 00 44 66 44
77 66 33 11 33 22 33
99 88 99 33 22 44 88
77 22 55 11 44 00 33
99 33 55 22 44 99 88

00 00 00 00 00 00 00

00
00
00
00
00
00
00
00
00

00 00 00 00 00 00 00 00
00
00
00
00
00
00
00
00

Divide	&	Conquer	Wrapup
• Leads	to	surprisingly	efficient	algorithms
• Not	terribly	general,	but	still	quite	useful
• We’ll	use	it	again	in

– Module	4	(sorting)
– Module	8	(geometry)

http://en.wikipedia.org/wiki/File:CaesarTusculum.jpg

