6.006
Introduction to Algorithms

v
- GEER GO
o N ‘
N
N\
ALGORITHMS

Lecture 2: Peak Finding

Prof. Erik Demaine

Today

e Peak finding (new problem)
— 1D algorithms

— 2D algorithms
e Divide & conquer (new technique)

Finding Water...
IN SPACE

e You are Geordi LaForge
 Trapped on alien mountain range

 Need to find a pool where water
accumulates

e (Can teleport, but can’t see

e

Banff, Canada

Finding Water...
IN SPACE

e Problem: Find a local minimum or maximum
in a terrain by sampling

Banff, Canada

1D Peak Finding

e Given an array A[0..n — 1]:

e 1 2 6537 4

012 3 4560

o Ali] is a peak ifitis not smaller than its
neighbor(s):
Ali — 1] < Ali] = Ali + 1]
where we imagine
Al—-1] = A|n] = —

e Goal: Find any peak

“Brute Force” Algorithm

e Test all elements for peakyness

for i in range(n):

return i

if Ali — 1] < Ali] = Ali + 1]:

=

5
0 3

3
A

W'l 2 6 7 4
1 2 5 6

5 (%o(w)

Algorithm 1.

* max(4)

— Global maximum is a local maximum

m =0
for i in range(1,n):

if A[i] > A[m]: TO@%G@

m = 1

return m

M1l 26 7 4
1 2 5 0

5 3
0 3 4

Cleverer Idea

A peak

* Look at any element A[i] and T /f\
its neighbors A[i — 1] & Ali + 1] o
)
— If peak: return i -1 ¢ i+

— Otherwise: locally rising on some side g
e Must be a peak in that direction \, \77

 So can throw away rest of array, 59 6‘”‘3 aﬂgy
leaving A[:i] or A[i + 1:]

<
+ I

012 3 4560

Where to Sample?

 Want to minimize the worst-case remaining
elements in array
— Balance A]: i] of length i
with A[i + 1:] of lengthn —i — 1
-1l =n—i—1
—i = (n—1)/2: middle element
— Reducento(n—1)/2

+: RPN

012 3 4560

Algorithm

peakld(4,i,j):

m = |(i +j)/2]

if Alm — 1] < A[m] = A[m + 1]:
return m

elif Alm — 1] > A[m]:
return peakld(4,i,m — 1)

elif Afm] < A[m + 1]:
return peakld(4,m + 1,))

A: 2 6 7 4
1 2 5 6

1 5 3
0 3 4

Divide & Conquer

e General design technique:

1.
2.

Divide input into part(s)

Conquer each part
recursively

. Combine result(s) to solve

original problem

e 1D peak:
1. One half
2. Recurse
3. Return

Divide & Conquer Analysis

1.

2.

Recurrence for time T (n)
taken by problem size n

Divide input into part(s):

Ny, Ny, ..., Ny,

Conquer each part
recursively

. Combine result(s)

to solve original problem

T(n) =

divide

T(ny) -

cost +

-T(ny)

+ - .

- T(ng)

+ combine cost

1D Peak Finding Analysis

e Divide problem into 1 problem of size ~§

e Divide cost: 0(1)
e Combine cost: 0(1)

e Recurrence:

T(n) = T(

n

2) +0()

Solving Recurrence

do't use (D) nfotion
& & corslark
T(m) =T (g) b o keep Tk S

T(n)=TG)+c+c
T(n)=T(§)+c+c+c
T(n)=T(2£k)+ck

T(n) =T(;;,n) Fclgn
T(n)=T(1)+clgn
T(n) =0(gn)

2D Peak Finding

e (Given n X n matrix
of numbers

 Want an entry not
smaller than its (up to)
4 neighbors:

Divide & Conquer #0

e Looking at center
element doesn't split
the problem into
pieces...

2
1
3

1
0
0
1

_ U S W NS D

Divide & Conquer #1-

e Consider max element
in each column

e 1D algorithm would
solve max array in
O(lgn) time

e But O(n?) time to
compute max array

UJIP—\OOP—\UOP—\N

-

1

Divide & Conquer

e Look at center column
e Find global max within

e [f peak: return it
e Else:
— Larger left/right neighbor

— Larger max in that column q
— Recurse in left/right half

e Base case: 1 column

— Return global max within R¢RLLS LY 5 9 8

JEEELLEL

o

Analysis #1

e O(n) time to find
max in column

e O(lgn) iterations
(like binary search)

e O(nlgn) time total

e Can we do better?

Divide & Conquer #2

Look at boundary, S
center row, and center ==
column (window)

Find global max within

If it's a peak: return it

Else:

— Find larger neighbor
— Can’t be in window

— Recurse in quadrant,
including green boundary

=

9
7
9

7
9
8
2

0

SISISIISISISIS

Correctness

 Lemma: If you enter a
quadrant, it contains a
peak of the overall
array [climb up]

e Invariant: Maximum
element of window
never decreases as we
descend in recursion

 Theorem: Peakin
visited quadrant is also
peak in overall array

-2 prosfs i recitalion

Analysis #2

O (n) time (|window|)
T(n) = T(g) +cn

n

T(n)=T(Z)+c—+cn

= O O OV AN W O

T(n)=T(§)+c%+c%+

T(n)=T(1)+c(1+2+4+---+%+§+n)

Divide & Conquer Wrapup

e Leads to surprisingly efficient algorithms

e Not terribly general, but still quite useful

* We'll use it again in -
— Module 4 (sorting) -
— Module 8 (geometry) i B

http://en.wikipedia.org/wiki/File:CaesarTusculum.jpg

