
6.006 Intro to Algorithms QUIZ 2 REVIEW NOTES April 12, 2011

Sorting

Counting Sort
Counting sort can sort n integers in the range 0 to k in O(n+ k) time. Say the unsorted n integers
are stored in array A. Counting sort works as follows:

1. Initialize counting array C, where C[i] will contain the number of times the element i occurs
in A. At initialization, C[i] = 0 for all i. Also initialize sorted array B, where B will contain
all the elements in A in sorted order.

2. Iterate through A, incrementing C[i] by 1 for each value i seen in A. At the end of this step,
C[i] = number of times element i was found in A

3. Iterate through C, setting C[i] = C[i−1] + C[i] for each i in C. At the end of this step, C[i]
= number of elements less than or equal to i that were found in A

4. Iterate through A backwards, placing element A[i] into B[C[A[i]]] and decrementing C[A[i]]
by 1 for each i in A. At the end of this step, B will contain all the elements in A in sorted
order

Radix Sort
Radix sort can sort n integers in base k with at most d digits in O(d(n + k)) time. It does this
by using counting sort to sort the n integers by digits, starting from the least significant digit (i.e.
ones digit for integers) to the most significant digit. Each counting sort will take O(n + k) time
since there are n elements and the elements are all integers in the range 0 to k since we’re in base
k. Since the maximum number of digits in these n integers is d, we will have to execute counting
sort d times to finish the algorithm. This is how we get a O(d(n+ k)) running time for radix sort.

The running time of radix sort depends on the base k that the integers are represented in. Large
bases result in slower counting sorts, but fewer counting sorts since the number of digits in the
elements decrease. On the other hand, small bases result result in faster counting sorts, but more
digits and consequently more counting sorts.

Let’s find the optimal base k for radix sort. Say we are sorting n integers in the range 0 to u−1.
The maximum number of digits in an element will be logk u for some base k. To minimize running
time, we will want to minimize O((n + k) logk u). It turns out that to minimize running time, the
best k to choose is k = n, in which case the running time of radix sort would be O(n logn u).
Note that if u = nO(1), the running time of radix sort turns out to be O(n), giving us a linear time
sorting algorithm if the range of integers we’re sorting is polynomial in the number of integers
we’re sorting.


