Problem Set 6

This problem set is divided into two parts: Part A problems are theory questions, and Part B problems are programming tasks.

Part A questions are due **Friday, May 7th at 11:59PM**.

Part B questions are due **Friday, May 7th at 11:59PM**.

Solutions should be turned in through the course website in PDF form using \LaTeX{} or scanned handwritten solutions.

A template for writing up solutions in \LaTeX{} is available on the course website.

Remember, your goal is to communicate. Full credit will be given only to the correct solution which is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

Part A: Due Friday, May 7th

1. **(25 points) Placing Parentheses**

 You are given an arithmetic expression containing \(n \) real numbers and \(n - 1 \) operators, each either + or \(\times \). Your goal is to perform the operations in an order that maximizes the value of the expression. That is, insert \(n - 1 \) pairs of parentheses into the expression so that its value is maximized.

 For example:

 - For the expression \(6 \times 3 + 2 \times 5 \), the optimal ordering is to add the middle numbers first, then perform the multiplications: \(((6 \times (3 + 2)) \times 5) = 150 \).
 - For the expression \(0.1 \times 0.1 + 0.1 \), the optimal ordering is to perform the multiplication first, then the addition: \(((0.1 \times 0.1) + 0.1) = 0.11 \).
 - For the expression \((−3) \times 3 + 3 \), the optimal ordering is \(((−3) \times 3) + 3) = −6 \).

 (a) **(10 points)** Clearly state the set of subproblems that you will use to solve this problem.

 (b) **(10 points)** Write a recurrence relating the solution of a general subproblem to solutions of smaller subproblems.

 (c) **(5 points)** Analyze the running time of your algorithm, including the number of subproblems and the time spent per subproblem.
2. **(25 points) Pots of Gold**

There are \(N \) pots of gold arranged linearly. Alice and Bob are playing the following game. They take alternate turns, and in each turn they remove (and win) either of the two pots at the two ends of the line. Alice plays first. Given the amount of gold in each pot, design an algorithm to find the maximum amount of gold that Alice can assure herself of winning.

(a) **(10 points)** Clearly state the set of subproblems that you will use to solve this problem.

(b) **(10 points)** Write a recurrence relating the solution of a general subproblem to solutions of smaller subproblems.

(c) **(5 points)** Analyze the running time of your algorithm, including the number of subproblems and the time spent per subproblem. Hint: your overall algorithm should be \(O(N^2) \).

Part B: Due Friday, May 7th

(50 points) Website Rankings

In class, you saw that the length of the longest common subsequence can be computed in \(O(n^2) \) time for two strings \(x \) and \(y \) of length \(n \), using dynamic programming. For general \(x \) and \(y \), it is not known if this value can be computed in \(O(n^{1.999}) \) time. In this problem, you will learn how to compute it in \(O(n \log n) \) time for non-repetitive strings.

Theory part (do not submit a solution to it). Definitions:

- Let \(z = (z_1, \ldots, z_n) \) be a sequence of integers. We say that \(t = (t_1, \ldots, t_k) \) is a subsequence of \(z \) if there is a sequence \((i_1, \ldots, i_k) \) of \(k \) indices such that \(i_1 < i_2 < \ldots < i_k \), and for all \(j \), \(t_j = z_{i_j} \).

- Let \(z = (z_1, \ldots, z_n) \) be a sequence of integers. We write \(\text{LIS}(z) \) to denote the length of the longest increasing subsequence of \(z \).

 Example: \(\text{LIS}((6, 2, 7, 5, 3, 4)) = 3 \), and this corresponds to the subsequence \((2, 3, 4) \).

- Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_m) \) be sequences of integers. We write \(\text{LCS}(x, y) \) to denote the length of the longest common subsequence of \(x \) and \(y \).

 Example: \(\text{LCS}((6, 2, 7, 5, 3, 4), (5, 6, 1, 7, 3, 4)) = 4 \), and this corresponds to the subsequence \((6, 7, 3, 4) \).

- Let \(z = (z_1, \ldots, z_n) \) be a sequence of integers. We say that \(z \) is non-repetitive if no integer appears twice in it.

 Example: \((5, 6, 1, 7, 3, 4) \) is non-repetitive, and \((4, 6, 1, 7, 1, 3) \) is not.

Design algorithms for the following two problems:
1. Show how to compute $LIS(z)$ for a sequence z of n integers in $O(n \log n)$ time.

Hint 1: Use the following sequence of arrays A_i. Let $A_i[j]$, where $i, j \in \{1, 2, \ldots, n\}$, be the lowest integer that ends an increasing length-j subsequence of (z_1, \ldots, z_i). If (z_1, \ldots, z_i) has no increasing subsequence of length j, then $A_i[j] = \infty$.

Hint 2: How can A_i be turned into A_{i+1} in $O(\log n)$ time? How can $LIS(z)$ be extracted from A_n?

2. Show how to compute $LCS(x, y)$ for two non-repetitive integer sequences x and y of length n in $O(n \log n)$ time.

Hint 1: Reduce to the previous problem.

Hint 2: Create a sequence z from y in the following way. Remove all integers that do not appear in x, and replace the other ones by their index in x. How is $LIS(z)$ related to $LCS(x, y)$?

Coding part (50 points). Consider two web search engines A and B. We send the same query, say “6.006”, to both search engines, and in reply we get a ranking of the first k pages according to each of them. How can we measure the similarity of these two rankings? Various methods for this have been designed, but here, we’ll use the simplest of them: LCS, the length of the longest common subsequence of the rankings.

Your task is to write a program that uses the above $O(n \log n)$ algorithm to compute LCS for two rankings. The program has to read the rankings from the standard input, and write their LCS to the standard output. We assume that pages are identical only if their URLs are identical. No URL appears twice in a ranking. You can use the Python dictionary to convert the input into an instance of the LIS problem.

Input Format

Line 1: The number k of URLs we receive from each of the search engines.

*Lines 2...$k + 1$: The list of k URLs received from A.

Lines $k + 2...2k + 3$: The list of k URLs received from B.
Sample Input

5
http://courses.csail.mit.edu/6.006/spring08/
http://courses.csail.mit.edu/6.006/fall07/
http://alg.csail.mit.edu/
http://courses.csail.mit.edu/6.006/fall09/
http://courses.csail.mit.edu/6.006/fall09/
http://courses.csail.mit.edu/6.006/spring08/
http://mit.worldcat.org/profiles/MITLibraries/lists/899062
http://courses.csail.mit.edu/6.006/fall07/

Output Format

Line 1: The value of LCS for the two sequences of URLs.

Sample Output

3

Note: More sample inputs and outputs are posted on the website.