
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 6, 2010
Professors Piotr Indyk and David Karger Problem Set 5

Problem Set 5
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Wednesday, April 21st at 11:59PM.
Part B questions are due Friday, April 23rd at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Wednesday, April 21st
1. (20 points) Graph Examples

(a) (6 points) Give an example of a graph that has some shortest path from vertex s to
vertex v, such that for all non-zero (positive or negative) real c, if c is added to the
weights of all the edges, that path is no longer a shortest path from s to v.

(b) (6 points) Give an example of a graph with negative-weight edges for which Dijkstra’s
algorithm gives incorrect answers.

(c) (8 points) Suppose that the RELAX function is changed so that it updates if d[v] ≥
d[u] + w(u, v) (instead of strictly greater than). Give an example of a graph with no
negative-weight cycles such that if Bellman-Ford is run on this graph with the modified
RELAX function, it will not return the correct π outputs.

2. (15 points) Even-Length Paths

An even-length path is a path traversing an even number of edges. Describe a modified
version of Dijkstra’s algorithm that finds the shortest even-length path in a graphG = (V,E)
from a given start vertex s to all vertices t ∈ V . The graph has non-negative edge weights.
Your solution should have the same asymptotic running time as Dijkstra’s algorithm. (HINT:
try solving the problem by constructing a graph G′ that is somehow related to G, running
Dijkstra’s algorithm on G′, and projecting the results back onto G.)

3. (15 points) Shortest Paths with Negative-Weight Cycles

G = (V,E) is a directed graph that contains at least one negative-weight cycle. Give an
O(V E)-time algorithm that labels each vertex v with the shortest-path distance from source



2 Problem Set 5

vertex s to v, −∞ if there the shortest-path distance is undefined because of a negative-
weight cycle, and∞ if v is not reachable from s.

Part B: Due Friday, April 23rd
1. (50 points) Speeding up Dijkstra.

The Howe & Ser Moving Company is transporting the Caltech Cannon from Caltech’s cam-
pus to MIT’s and wants to do so most efficiently. Fortunately, you have at your disposal the
National Highway Planning Network (NHPN), packaged for you in ps5_dijkstra.zip.
You can learn more about the NHPN at
http://www.fhwa.dot.gov/planning/nhpn/

This data includes node and link text files from the NHPN. Open nhpn.nod and nhpn.lnk
in a text editor to get a sense of how the data is stored (datadict.txt has a more precise
description of the data fields and their meanings). To save you the trouble of parsing these
structures from a file, we have provided you with a Python module nhpn.py containing
code to load the text files into Node and Link objects. Read nhpn.py to understand the
format of the Node and Link objects you will be given.

Your goal in this problem is to implement and test several techniques for speeding-up Dijk-
stra’s algorithm in order to compute shortest paths between various pairs of locations.

Implementation of Dijkstra’s algorithm is already provided. Function

dijkstra(nodes, edges, weight, source)

is given a graph with non-negative edges (represented as a list of Node objects and a list of
undirected Edge objects), a function weight(node1, node2) that returns the weight of
any edge between node1 and node2, and a source node source. This function updates
the node.visited field for all nodes, which indicates whether a shortest path to node
has been found, as well as node.distance and node.parent for visited nodes, which
are the length of the shortest path from the source node to node and the previous node on
that path respectively. The function returns the number of nodes visited during the execution
of the algorithm.

The links you are given do not include weights, so instead we use the geographical distance
between their endpoints. Function distance(node1, node2) returns the distance be-
tween two NHPN nodes. Nodes come with latitude and longitude (in millionths of degrees).
For simplicity, we treat these as (x, y) coordinates on a flat surface, where the distance be-
tween two points can be calculated using the Pythagorean Theorem.

Dijkstra’s algorithm uses a priority queue, but this priority queue has one subtle requirement.
Dijkstra’s algorithm calls decrease_key, but decrease_key requires the index of an
item in the heap, and Dijkstra’s algorithm would have no way of knowing the current index
corresponding to a particular Node. To solve this problem, the course staff have written an
augmented heap object, heap_id, with the following extra features:



Problem Set 5 3

• insert(key) returns a unique ID.

• decrease_key_using_id(ID, key) takes an ID instead of an index.

• extract_min_with_id() extracts the minimum element and returns a pair (key, ID).

Additionally, we have provided some tools to help you visualize the output from your al-
gorithms. You can use the Visualizer class to produce a KML (Google Earth) file. To
view such a file on Google Maps, place it in a web-accessible location, such as your Athena
Public directory, and then search for its URL on Google Maps.

For this problem, you will modify the file dijkstra.py. As you solve each part of the
problem, check your work by running the appropriate test functions. We have provided
several test functions that test each part separately or perform comparison tests of several
methods. You should follow the instructions for each part of the problem, perform appro-
priate tests and draw conclusions. Please submit the modified dijkstra.py file with the
code and dijkstra.pdf file with proofs and short answers. Keep them short.

(a) (3 points) Examine the code provided in nhpn.py, heap.py and dijkstra.py
to learn the structure of the Node and Link classes and the implementation of Dijkstra’s
algorithm. Run test_a(). Is there a significant difference in the execution time for
different pairs of nodes? Explain your observation.

(b) (7 points) One way to speed up Dijkstra’s algorithm is to terminate the algorithm early
once a shortest path to the destination has been found.
Implement function

dijkstra_early_stop(nodes, edges, weight, source, dest)

that performs this optimization. As with the function dijsktra(), this function
should update the node.visited, node.distance and node.parent fields,
and return the number of nodes visited during its execution. Run test_b(). What
characterizes pairs of nodes for which there is a significant speed-up using this opti-
mized version of Dijkstra’s algorithm?
HINT: Reuse the implementation of Dijkstra’s algorithm provided, making the required
changes to allow for early termination.

(c) (20 points) We will apply the potentials method with a landmark node to obtain a
faster shortest path algorithm. For a given landmark node l, we denote the potential
of a node u with respect to a destination node t by λlt(u). The potential is defined as
λlt(u) = δ(u, l) − δ(t, l) if there exists a path from u to t through l, and λlt(u) = C
where C is some fixed constant if no such path exists. (Here, δ(u, v) denotes the length
of a shortest path from u to v).

i. Prove that this potential function is feasible, i.e. the modified weight of every edge
is non-negative.

ii. Implement function



4 Problem Set 5

compute_landmark_distances(nodes, edges, weight, landmark)

that computes shortest paths from all nodes to the given landmark node landmark.
For each node node, node.land_distance should be set to the value of the
shortest path distance from node to landmark or to some constant C if no such
path exists (e.g., C = 109). Why is it more useful to precompute distances to the
landmark node than precomputing the potentials themselves?

iii. Implement function

dijkstra_with_potentials(nodes, edges, weight, source, dest)

that performs Dijkstra’s algorithm using edge weights modified according to the
potentials method (i.e. w′(u, v) = w(u, v)−λlt(u)+λlt(v) for a landmark l and des-
tination t) and terminates as soon as a shortest path to the destination node dest
has been found. This function assumes that node.land_distance is already
set to the proper value (no need to call compute_landmark_distances()
from it). As before, this function should update node.visited, node.distance
and node.parent fields, and return the number of nodes visited during its ex-
ecution. Run test_d(). In which scenarios is the speed-up most significant
(compare to both Dijkstra’s algorithm and Dijkstra’s algorithm with early termi-
nation)?
Hint: Reuse the implementation of Dijkstra’s algorithm provided, making the nec-
essary changes.

(d) (20 points) We will now describe a potentials method where multiple landmarks are
used. For a given set of landmarks L, the potential of a node u with respect to a
destination node t is λLt (u) = maxl∈Lλ

l
t(u), where λlt(u) is defined as before.

i. Prove that this potential function is also valid, i.e. the modified weight of every
edge is non-negative.

ii. How does the potential function λLt (u) compare to a potential function λlt(u) for
any single landmark vertex l ∈ L in terms of the number of visited nodes when
used in Dijkstra’s algorithm with early termination? Explain which is better and
why.

iii. Implement function

compute_multi_landmark_distances(nodes, edges, weight,
landmarks)

that computes shortest paths from all nodes to all given landmark nodes in landmarks.
For each node node, node.land_distances should be set to a list of values,
such that node.land_distances[i] is the shortest path length from node
to landmarks[i] or some constant C if no such path exists (e.g., C = 109).

iv. Implement function

dijkstra_with_max_potentials(nodes, edges, weight,
source, dest)



Problem Set 5 5

that performs Dijkstra’s algorithm using edge weights modified according to the
potentials method with multiple landmarks (i.e. w′(u, v) = w(u, v) − λLt (u) +
λLt (v) for a set of landmarks L and destination t), and terminates as soon as
a shortest path to the destination node dest is found. This function assumes
that node.land_distances is already set to the proper list of values. As
before, this function should update node.visited, node.distance and
node.parent fields, and return the number of nodes visited during its exe-
cution. Run test_f(). Does the performance of your algorithm match your
assertions from part ii.?

(e) (Optional) Included in nhpn.py is a method to convert a list of nodes to a .kml file.
.kml files can be viewed using Google Maps, by putting the file in a web-accessible
location (like your Athena Public directory), going to
http://maps.google.com and putting the URL in the search box.
Run visualize_path.py. This will create two files, path_flat.kml and
path_curved.kml. Both should be paths from Pasadena CA to Cambridge MA.
path_flat.kml was created using the distance function you wrote in part (b), and
path_curved.kml was created using a distance function that does not assume that
the Earth is flat. Can you explain the differences? Also, try asking Google Maps for
driving directions from Caltech to MIT to get a sense of how similar their answer is.


