
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 2nd, 2010
Professors Piotr Indyk and David Karger Problem Set 3

Problem Set 3
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, March 16th at 11:59PM.
Part B questions are due Thursday, March 18th at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using LATEX or scanned handwritten solutions. Your solution to Part B should be a valid
Python file which runs from the command line.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, March 16th
1. (25 points) d-ary Heaps

In class, we’ve seen binary heaps, where each node has at most two children. A d-ary heap
is a heap in which each non-leaf node (except perhaps one) has exactly d children. For
example, this is a 3-ary heap:

(a) (2 points) Suppose that we implement a d-ary heap using an array A, similarly to how
we implement binary heaps. That is, the root is contained in A[0], its children are
contained in A[1 . . . d], and so on. How do we implement the PARENT(i) function,
which computes the index of the parent of the ith node, for a d-ary heap?

(b) (2 points) Now that there might be more than two children, LEFT and RIGHT are no
longer sufficient. How do we implement the CHILD(i, k) function, which computes the
index of the kth child of the ith node? (0 ≤ k < d)



2 Problem Set 3

(c) (5 points) Express, in asymptotic notation, the height of a d-ary heap containing n
elements in terms of n and d.

(d) (5 points) Give the asymptotic running times (in terms of n and d) of the HEAPIFY and
INCREASE-KEY operations for a d-ary heap containing n elements.

(e) (6 points) Let’s suppose that when we build our d-ary heap, we choose d based on the
size of the input array, n. What is the height of the resulting heap (in terms of n) if we
choose d = Θ(1)? What if d = Θ(log n)? What about d = Θ(n)?
(HINT: remember that logd n = log n

log d
. This might simplify your expressions a little.)

(f) (5 points) What are the running times of HEAPIFY and INCREASE-KEY for the three
choices of d above? Do the running times increase or decrease when you increase d?
If your program calls HEAPIFY and INCREASE-KEY the same number of times, what
would be your choice for d and why?

2. (25 points) Monotone Priority Queues

A “monotone priority queue” (MPQ) is a (max) priority queue that only allows monotoni-
cally decreasing elements to be extracted. It supports the following operations:

• Max(Q): Returns the key of the most recently extracted node. If no nodes have been
extracted, returns∞. This does not modify the MPQ.

• Extract Max(Q): Removes and returns the maximum node currently in Q, and
updates Max(Q). If Q is empty, returns Max(Q).

• Insert(Q, x): Inserts x into Q given that x ≤ Max(Q). If x > Max(Q), then the
MPQ is not modified.

When asked to “describe an implementation”, you may start with something already proven
in class or in the book, and simply describe modifications to that.

(a) (10 points) Describe an implementation of a monotone priority queue that takes O(m log m)
time to perform m operations starting with an empty data structure.

(b) (15 points) Now suppose that every inserted key x is an integer in the range [0, k] for
some fixed integer value k. Describe an implementation of such a monotone priority
queue that takes O(m + k) time to perform m total operations.
Hint: Use an idea from Counting Sort.
Warning: Be careful about the case when the queue becomes empty.



Problem Set 3 3

Part B: Due Thursday, March 18th
(50 points) Pset Scheduling

Ben Bitdiddle is behind on his problem sets. In fact, he is already late on N different problem sets
(1 ≤ N ≤ 100, 000). Fortunately for Ben, all of his classes accept late homework with a grade
penalty for each day late.

Suppose that problem set i, where i is in {1 . . . N}, takes Di days to complete and has a penalty
of Pi points per day late. There is no limit to the number of penalty points Ben can accrue. (Ben’s
penalty adjusted score can become negative.) Ben is required to finish each problem set.

Help Ben by writing a program to determine the order in which Ben should do his problem sets in
order to minimize the total number of penalty points Ben receives on all of his assignments. Your
program will be run from the command line. (Note that when a Python program is run from the
command line, the test name == ’ main ’will return True.) Your program should
read the input from the file ps3b.in and write the correct output to ps3b.out. After writing
the output, your program should exit. The input and output formats are given below. Failure to
correctly implement this specification will lose you points.

As part of your program, you will need to do some sorting. You should write your own implemen-
tation of heap sort for this problem. Your implementation of heap sort should have the signature:

def heap_sort(list):

where list is the list to sort. Your function should sort list in ascending order using the default
Python ordering defined by < and >. This means, for instance, that heap sort([5,1,4,0])
should return [0,1,4,5]. (If you wish to sort more complicated objects than numbers using
this function, one approach is to put them in a tuple. Python will then sort the tuples by their first
elements, breaking ties by second element etc.) Using this function specification will allow us to
better test your code if you have a bug and give you more partial credit.

Input Format (file ps3b.in)

Line 1: The single integer N .

Lines 2 . . . (N + 1): The (i + 1)-st line describes the Ben’s i-th problem set and contains
two integers, Di and Pi, separated with a single space.

Sample Input

4
4 1
2 5
1 2
2 3



4 Problem Set 3

Output Format (file ps3b.out)

Line 1: A single integer which is the minimum possible number of penalty points Ben can
receive. (Note that a floating point answer, such as 40.0, will receive fewer points.)

Sample Output

40

Sample Explanation

In the sample above, Ben first spends 2 days finishing pset #2, accruing 10 penalty points.
He then spends 1 day finishing pset #3, accruing 6 penalty points. He then 2 days finishing
pset #4, accruing 15 penalty points. He lastly spends 4 days finishing pset #1, accruing 9
penalty points.

Hint: Think about how you might approach this in real life. You should somehow prioritize Ben’s
problem sets and then sort them according to this priority.


