Introduction to Algorithms: 6.006

Massachusetts Institute of Technology February 18th, 2010
Professors Piotr Indyk and David Karger Handout 3
Problem Set 2

This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, March 2nd at 11:59PM.

Part B questions are due Thursday, March 4th at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using ISTEX or scanned handwritten solutions. Your solution to Part B should be two
valid Python files which runs from the command line, together with one PDF file containing your
solutions to part (a), (b), (¢) and the optional part (f).
Templates for writing up solutions in ISTEX are available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, March 2nd
1. (14 points) Building a Balanced Search Tree from a Sorted List

You are given a sorted Python list containing n distinct numbers.

(a) (4 points) Show how to construct a binary search tree containing the same numbers.
The tree should be roughly balanced (its height should be O(logn)) and the running
time of your algorithm should be O(n).

(b) (5 points) Argue that your algorithm returns a tree of height O(logn). Note: It is
probably easier to prove an absolute bound (such as 1 + logn or 2logn) than to use
asymptotic notation in the argument.

(c) (5 points) Argue that the algorithm runs in O(n) time (here it is hard to avoid the
asymptotic notation, so use asymptotic notation).

2. (18 points) Range Queries for a Balanced Search Tree

We use balanced binary search trees for keeping a directory of MIT students. We assume that
the names of students have bounded constant length so that we can compare two different
names in O(1) time. Let n denotes the number of students. Say we have a binary search tree
with students’ last names as the keys with lexicographic dictionary ordering. In this problem
we are going to use the balanced search tree to answer some range queries of the students’
last names.

2 Handout 3: Problem Set 2

For example, if the tree contains 5 names {ABC, ABD, ADA, ADB, ADC}, then all the 5
names are (inclusively) between ABC and ADC. There are two names, namely ABC and
ABD, start with the prefix x=AB.

(a) (6 points) Given two strings a and b with @ < b, give an algorithm that returns all the
nodes whose key values are (inclusively) between a and 0. If the total number of such
nodes is k, then the running time of your algorithm should be O(k + logn).

(b) (6 points) Give an algorithm that outputs a list of all the nodes whose keys starts with
a given prefix = in O(k + log n) time, where k is the number of nodes in the list.

(c) (6 points) Give an algorithm to count the number of nodes whose keys start with a
given prefix = in O(logn) time, independent of the number of such nodes. You are
allowed to augment the binary search tree nodes.

3. (18 points) Collision Resolution

Assume simple uniform hashing in the entire problem.

(a) (6 points) Consider a hash table with m slots that uses chaining for collision resolution.
The table is initially empty. What is the probability that, after four keys are inserted,
there is a chain of size 4?7

(b) (6 points) Consider a hash table with m slots that uses open addressing with linear
probing. The table is initially empty. A key £, is inserted into the table, followed by
key k9. What is the probability that inserting key k3 requires three probes?

(c) (6 points) Suppose you have a hash table where the load-factor « is related to the

number 7 of elements in the table by the following formula:

1
logn’

a=1-—

If you resolve collisions by open addressing, what is the expected time for an unsuc-
cessful search in terms of n?

Part B: Due Thursday, March 4th

1. (50 points) Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees have 24
pairs. Biologists claim that human chromosome #2 is a fusion of two primate chromosomes
that they call 2a and 2b. We wish to verify this claim by locating long nucleotide chains
shared between the human and primate chromosomes.

Handout 3: Problem Set 2 3

We define the longest common substring of two strings to be the longest contiguous string
that is a substring of both strings e.g. the longest common substring of DEADBEEF and
EA7BEEF is BEEF.! If there is a tie for longest common substring, we just want to find one
of them.

Download ps2-source. zip from the class website. Use the template file ps2B-template.tex
provided on the course website to put your solutions to part (a), (b), (e) and the optional part
(f) in a PDF file (or you may scan your handwritten solutions and submit it as a PDF file).

(a) (2 points)
Bob wrote substringl.py. What is the asymptotic running time of his code? As-
sume |s| = |t| = n.

(b) (2 points)
Alice realized that by only comparing substrings of the same length, and by saving

substrings in a hash table (in this case, a Python set), she could vastly speed up Bob’s
code.

Alice wrote substring2.py. What is the asymptotic running time of her code?

(c) (12 points) Recall binary search from Problem Set 1. Using binary search on the
length of the string, implement an O(n?logn) solution. You should be able to copy
Alice’s k_substring code without changing it, and just rewrite the outer loop
longest_substring.

Check that your code is faster than substring2.pyforchr2_first_10000 and
chr2a_first_10000.

Put your solution in substring3.py, and submit it to the class website.

(d) (30 points)
Rabin-Karp string searching is traditionally used to search for a particular substring
in a large string. This is done by first hashing the substring, and then using a rolling
hash to quickly compute the hashes of all the substrings of the same length in the large
string.
For this problem, we have two large strings, so we can use a rolling hash on both of
them. Using this method, implement an O(n log n) solution for longest_substring.
You should be able to copy over your outer loop
longest_substring from part (c) without changing it, and just rewrite
k_substring.

Your code should work given any two Python strings (see test-substring.py for
examples). The comparison should be case-sensitive. We recommend using the ord
function to convert a character to its ascii value.

Check that your code is faster than substring3.pyforchr2_first_10000 and
chr2a_first_10000.

'Do not confuse this with the longest common subsequence, in which the characters do not need to be contiguous.
The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.

(e)

®

Handout 3: Problem Set 2

Put your solution in substring4.py, and submit it to the class website.

Remember to thoroughly comment your code, including an explanation of any param-
eters chosen for the hash function, and what you do about collisions.

(4 points)
The human chromosome 2 and the chimp chromosomes 2a and 2b are quite large (over

100,000,000 nucleotides each) so we took the first and last million nucleotides of each
chromosome and put them in separate files.

chr2_first_1000000 contains the first million nucleotides of human chromo-
some 2, and chr2a_first_1000000 contains the first million nucleotides of chim-
panzee chromosome 2a. Note: these files contain both uppercase and lowercase letters
that are used by biologists to distinguish between parts of the chromosomes called in-
trons and extrons.

Run substring4.py on the following DNA pairs, and submit the lengths of the
substrings.
Warning: This part may take a while depending on your implementation of the Rabin-
Karp rolling hash. (Leave more than an hour for this part):
chr2_first_ 1000000 and chr2a_ first 1000000
chr2_first_1000000 and chr2b_first_1000000
chr2_1ast_1000000 and chr2a_last_1000000
chr2_1ast_1000000 and chr2b_last_1000000
If your code works, and biologists are correct, then the first million codons of chr2 and
chr2a should have much longer substrings in common than the first million codons of
chr2 and chr2b. The opposite should be true for the last million codons.

Optional: Make your code run in O(n log k) time, where k is the length of the longest
common substring.

