6.006 Lecture 7: Hashing 3

- Rolling hashes
- Open Addressing
- Uniform hashing + analysis
- Advanced topics: universal, perfect, & cryptographic hashing

- CLRS 11.4, 11.3.3, 41.5

Open Addressing

- No linked lists
- Collision? Store elsewhere in hash table
- More collisions? Probe more; may need to probe m-1 times to find an empty slot

- Hash function of key \(k \) is now a sequence of probes \(\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle \)

 sequence must be a permutation of 0, 1, 2, \ldots, m-1

 a key maps to a permutation

- Clearly, load factor \(\alpha \leq 1 \).
Rabin-Karp String matching & Rolling hashes

Given pattern $P[1..m]$ \{ lists of characters \}

text $T[1..n]$

does P occur in T?

E.g. find "BFG" in "AATCGGC..."

Idea:
- Compute $h(P)$
- For each length-m window of T, $T[i..i+m-1]$

 \[
 \begin{array}{c}
 AATCGGC \\
 \underline{ATCGC} \\
 \end{array}
 \]

 Compute $h(T[i..i+m-1])$ and compare to $h(P)$
 if $=$: check to see if really a match
 if \neq: move on to next i

- Use a hash function h s.t. can compute $h(T[i..i+m-1])$ from $h(T[i-1..i+m])$ easily
 \Rightarrow rolling hash
Example of a rolling hash

Alphabet \(A, C, G, T \)

\[h = \text{value of string } \% p \text{ for prime } p \]

\[T = \text{TATTACGTT} \]
\[1 3 0 3 3 0 1 2 3 4 \] < base 4
\[1 8 4 0 9 1 1 0 \]
\[y 3 \mod p = 1009 \]

\(\downarrow \) delete \(C \)

\[T = \text{TATTACGTT} \]
\(\uparrow \) add \(G \)

value of leading \(C = 1 \cdot 4^8 = 1.960 \)

so dropping leading \(C \Rightarrow h = 3453 - 690 = 502 \mod p \)

\(\uparrow \text{shifting and adding a } G: \)

\[h = 4 \cdot 502 + 2 = 1001 \mod p \]

\[\text{shift } \]

\[\text{add } \]

\[\text{mulitply } \times 1 \]

\[\text{cost of moving } h \text{ to next window} \]
Insert \((k, v)\):

for \(i\) in range \((m)\):
 if \(T[h(k,i)] == \text{None}\): \(T[h(k,i)] = (k, v)\)
 return
raise Exception('full')

Search \((k)\):

for \(i\) in range \((m)\)
 if \(T[h(k,i)] == \text{None}\): return None # not in table
 if \(T[h(k,i)][0] == k\): return \(T[h(k,i)]\)
return None

Delete \((k)\):

tricky! setting \(T[h(k,i)] = \text{None}\) may cause
search to fail (e.g. deleting the first
element inserted in the
example causes the third
not to be found

* Find key
* Replace by 'Deleted'
* Skip over 'Deleted' in
 search but use 'Deleted' slots in insert.
How to construct \(h(k,i) \)

- What do we want?
 - For chaining, we want simple uniform hashing:
 each key is equally likely to hash to any slot.
 - For open addressing, we want uniform hashing:
 each key is equally likely to hash to any of the \(m! \) probe sequences (permutations of 0, 1, \ldots, m-1).
 - Harder to achieve, but double hashing works well.

Linear probing

- Start with an ordinary hash function \(h'(k) \)
- \(h(k,i) = (h'(k)+i) \mod m \)
- Start at \(h'(k) \) and scan sequentially
- Not good: only \(m \) possible sequences, leads to clustering

Double hashing

- \(h(k,i) = (h_2(k)+i \cdot h_2(k)) \mod m \)
- to ensure \(h(k,*) \) hits all slots, make \(h_2(k) \) and \(m \) relatively prime. Ex: \(m=2^r, h_2(k) \) odd
Open addressing vs Chaining

- Cost explodes as \(n \) approaches 1.
- No memory allocation (except to resize), cache efficient.
- Hard to find a really good \(h \).
- Easier to implement in hardware.

Chaining

- Cost rises gently with \(n \).
- Allocates memory as chains grow (constant overhead).
- Easy to find a good \(h \).

Advanced topics in hashing

- **Universal hashing** (back to chaining)

 For any \(h \) there are collisions; if we are unlucky all the keys may hash to 1 slot.

 Solution: Don't use a fixed \(h \); choose it at random.

 Universal hashing: random selection of \(h \) should guarantee

 \[
 \Pr[k_1, k_2 \text{ collide}] \leq \frac{1}{m}
 \]

 \[
 h(k) = ((ak + b) \mod p) \mod m \quad \text{(last lecture) works.}
 \]

 random

- **Perfect hashing**: \(\Theta(1) \) worst-case search for fixed set of keys.

 - Primary table stores pointers to secondary tables + their hash function.
 - Make secondaries large enough so prob. of any collision \(\leq \frac{1}{2} \).
 - Try secondary hashes until no collisions at all.

 Space is still \(\Theta(n) \) (expected).