Outline: Hashing III
- open addressing, probing strategies
- uniform hashing, analysis
- advanced hashing

Reading: CLRS 11.4
(and 11.3.3 & 11.5 if interested)

Open addressing: another approach to collisions
- no linked lists
- all items stored in table
- one item per slot \(\Rightarrow m \geq n \)

- hash function specifies order of slots to probe (try) for a key, not just one slot:
 \(<h(k,0), h(k,1), \ldots, h(k,m-1)> \).
 \(h : \mathbb{U} \times \{0,1,\ldots,m-1\} \rightarrow \{0,1,\ldots,m-1\} \)
 all possible keys \(\mapsto \) which probe \(\mapsto \) slot to probe

\[k \xrightarrow{h(k,0)} h(k,1) \xrightarrow{h(k,2)} h(k,3) \]
Insert \((k,v)\):
for \(i\) in \(\text{xrange}(m)\):
 if \(T[h(k,i)]\) is None:
 \(T[h(k,i)] = (k,v)\) # empty slot
 # store item
return
raise 'full'

Example: insert \(k = 496\)
- probe \(h(496, \emptyset) = 4\)
- probe \(h(496, 1) = 1\)
- probe \(h(496, 2) = 5\)

Search \((k)\):
for \(i\) in \(\text{xrange}(m)\):
 if \(T[h(k,i)]\) is None:
 return None # empty slot?
 elif \(T[h(k,i)] [\emptyset] == k\):
 return \(T[h(k,i)]\) # end of "chain"
 # matching key?
 return None # return item
 # exhausted table

Delete \((k)\):
- can't just set \(T[h(k,i)] = \text{None}\)
- example: delete \(586 \Rightarrow \text{search}(496)\) fails
- replace item with \(\text{DeleteMe}\), which
 Insert treats as \(\text{None}\) but Search doesn't
Probing strategies:

Linear probing: \(h(k, i) = (h'(k) + i) \mod m \)

- like street parking
- problem: clustering
- as consecutive group of filled slots grows, gets more likely to grow
- for \(0.01 < \alpha < 0.99 \) say, clusters of \(\Theta(\lg n) \)
- for \(\alpha = 1 \), clusters of \(\Theta(\sqrt{n}) \) – known

Double hashing: \(h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m \)

- actually hit all slots (permutation) if \(h_2(k) \) is relatively prime to \(m \)
- e.g. \(m = 2^7 \), make \(h_2(k) \) always odd

Uniform hashing assumption:

- each key is equally likely to have any one of the \(m! \) permutations as its probe sequence
- not really true
- but double hashing can come close
Analysis: open addressing for \(n \) items in table of size \(m \) has expected cost of \(\leq \frac{1}{1-\alpha} \) per operation, where \(\alpha = \frac{n}{m} \) assuming uniform hashing \((\leq 1) \)

Example: \(\alpha = 90\% \Rightarrow 10 \) expected probes

Proof: Always make a first probe.
With probability \(\frac{n}{m} \), first slot occupied.
In worst case (e.g. key not in table), go to next.
With probability \(\frac{n-1}{m-1} \), second slot occupied.
Then, with probability \(\frac{n-2}{m-2} \), third slot full.
Etc. (\(n \) possibilities)

So expected cost = \(1 + \frac{n}{m}(1 + \frac{n-1}{m-1}(1 + \frac{n-2}{m-2}(\cdots\right)

Now: \(\frac{n-i}{m-i} \leq \frac{n}{m} = \alpha \) for \(i = 0, 1, \ldots, n (\leq m) \)
So expected cost \(\leq 1 + \alpha(1 + \alpha)(1 + \alpha)(\cdots = 1 + \alpha + \alpha^2 + \alpha^3 + \cdots = \frac{1}{1-\alpha}. \quad \square \)
Open addressing vs. chaining
- better cache performance
- rarely allocate memory
- less sensitive to hash functions & a

Advanced hashing:

Universal hashing: instead of defining one hash function, define a whole family & select one at random
- e.g. multiplication method with random a
- can prove $\Pr[h(x) = h(y)] = \frac{1}{m}$ for every $x \neq y$

$\Rightarrow \Theta(1)$ expected time per operation without assuming simple uniform hashing! [CLRS 11.3.3]

Perfect hashing: guarantee $O(1)$ worst-case search
- idea: if $m = n^2$ then $E[\#\text{collisions}] \approx \frac{1}{2}$
 \Rightarrow get \emptyset after $O(1)$ tries... but $O(n^2)$ space
- use this structure for storing chains

k items $\Rightarrow m = k^2$
- no collisions

$\Theta(n)$

[CLRS 11.5]

- can prove $O(n)$ expected total space!
- if ever fails, rebuild from scratch