Outline: Hashing II
- table resizing
- amortization
- string matching & Karp-Rabin
- rolling hash

Reading: CLRS 17 & 32.2

Recall:
- hashing with chaining:

\[h(k) = \left((a \cdot k) \mod 2^w \right) \gg (w-r) \]

where \(m = \text{table size} = 2^r \)

- Multiplication Method:
- \(w \)-bit machine words
- \(a \) = odd integer between \(2^{w-1} \) & \(2^w \)

\[\text{Ignore} \quad \frac{w-r}{w-r} \]

\[\frac{\text{keep}}{\text{product as sum}} \]

lots of mixing
How large should table be?
- want $m = \Theta(n)$ at all times
- don't know how large n will get creation
- m too small \Rightarrow slow; m too big \Rightarrow wasteful

Idea: start small (constant)
grow (& shrink) as necessary

Rehashing: to grow or shrink table
hash function must change (m, r)
\Rightarrow must rebuild hash table from scratch
for item in old table:
 insert into new table
$\Rightarrow \Theta(n+m)$ time $= \Theta(n)$ if $m = \Theta(n)$

How fast to grow? when n reaches m, say
- $m \leftarrow 1$?
 \Rightarrow rebuild every step
 \Rightarrow n inserts cost $\Theta(1+2+\cdots+n) = \Theta(n^2)$
- $m \leftarrow 2$? $m = \Theta(n)$ still $(r \leftarrow 1)$
 \Rightarrow rebuild at insertion 2^i
 \Rightarrow n inserts cost $\Theta(1+2+4+8+\cdots+n)$
 really the next power of 2
 $= \Theta(n)$

- a few inserts cost linear time, but $\Theta(1)$ “on average”
Amortized analysis — common technique in DSs
- like paying rent: $1500/month ≈ $50/day
- operation has amortized cost $T(n)$
 if k operations cost $\leq k \cdot T(n)$
- "$T(n)$ amortized" roughly means
 $T(n)$ "on average", but averaged over all ops.
- e.g. inserting into a hash table
 takes $O(1)$ amortized time

Back to hashing: maintain $m = \Theta(n)$ so also
support search in $O(1)$ expected time
assuming simple uniform hashing

Delete: also $O(1)$ expected as is
- space can get big with respect to n
 e.g. $n \times$ insert, $n \times$ delete
- solution: when n decreases to $m/4$,
 shrink to half the size
$\implies O(1)$ amortized cost for both insert&delete
- analysis harder; see CLRS 17.4
String matching: given two strings \(s \) & \(t \), does \(s \) occur as a substring of \(t \)? (and if so, where & how many times?)

E.g. \(s = '6.006' \) & \(t = \) your entire INBOX ('grep' on UNIX)

Simple algorithm:
\[
\text{any}(s == t[i:i+len(s)])
\]
for \(i \) in \(\text{range}(\text{len}(t) - \text{len}(s)) \)

- \(O(|s|) \) time for each substring comparison
- \(\Rightarrow O(|s| \cdot (|t| - |s|)) \) time
- \(= O(|s| \cdot |t|) \) potentially quadratic

Karp–Rabin algorithm:
- compare \(h(s) == h(t[i:i+len(s)]) \)
- if hash values match, likely so do strings
 - can check \(s == t[i:i+len(s)] \) to be sure \(\sim \text{cost } O(|s|) \)
- if yes, found match - done
- if no, happened with probability \(< \frac{1}{|s|} \)
 \(\Rightarrow \) expected cost is \(O(1) \) per \(i \)
- need suitable hash function
- expected time = \(O(|s| + |t| \cdot \text{cost}(h)) \)
 - na"ively \(h(x) \) costs \(|x| \)
 - we\'ll achieve \(O(1) \)!
- idea: \(t[i:i+len(s)] \approx t[i+1:i+1+len(s)] \)
Rolling hash ADT: maintain string subject to
- \(h() \): reasonable hash function on string
- \(h.append(c) \): add letter \(c \) to end of string
- \(h.skip(c) \): remove front letter from string, assuming it is \(c \)

Karp-Rabin application:
for \(c \) in \(s \):
 \(h.s.append(c) \)
for \(c \) in \(t[:len(s)] \):
 \(h.t.append(c) \)
if \(h.s() == h.t() \):
 \(\ldots \)
for \(i \) in range(\(len(s) \), \(len(t) \)):
 \(h.t.skip(t[i - len(s)]) \)
 \(h.t.append(t[i]) \)
if \(h.s() == h.t() \):
 \(\ldots \)

Data structure: treat string as a multidigit number \(u \) in base \(a \)

- \(h() = u \mod p \) for prime \(p \approx |s| \) or \(|t| \)
 (division method)
- \(h \) stores \(u \mod p \) & \(\lceil u \rceil \), not \(u \)
 \(\Rightarrow \) smaller & faster to work with
 \(u \mod p \) fits in one machine word
- \(h.append(c) = \) \((u \cdot a + \text{ord}(c)) \mod p \)
 \(= \left[(u \mod p) \cdot a + \text{ord}(c) \right] \mod p \)
- \(h.skip(c) = \left[u - \text{ord}(c) \cdot (a^{\lceil u \rceil - 1} \mod p) \right] \mod p \)
 \(= \left[(u \mod p) - \text{ord}(c) \cdot (a^{\lceil u \rceil - 1} \mod p) \right] \mod p \)