Outline: Balanced BSTs
- The importance of being balanced
- AVL trees
 - definition
 - balance
 - insert
- Other balanced trees
- Data structures in general

Reading: CLRS 13.1 & 13.2
(but different approach: red-black trees)

Recall: Binary Search Trees (BSTs)
- rooted binary tree
- each node has
 - key
 - left pointer
 - right pointer
 - parent pointer
- BST property:
 \[x < \text{left child} \quad \text{or} \quad \text{right child} < x \]
- height of node = length (# edges) of longest downward path to a leaf
The importance of being balanced:
- BSTs support insert, min, delete, rank, etc. in $O(h)$ time, where h = height of tree ($= \text{height of root}$)
- h is between $\lg n$ and n:

perfectly balanced

balanced BST maintains $h = O(\lg n)$
\Rightarrow all operations run in $O(\lg n)$ time
AVL trees: [Adel’son-Vel’skii & Landis 1962]
for every node, require heights of left & right children to differ by at most \pm 1
- treat null tree as height -1
- each node stores its height (DATA STRUCTURE AUGMENTATION) (like subtree size) (alternatively, can just store difference in heights)

\textbf{Balance:} worst when every node differs by 1
- let \(N_h = (\text{min.}) \) \# nodes in height-\(h \) AVL tree
\[\Rightarrow N_h = N_{h-1} + N_{h-2} + 1 \]
\[> 2N_{h-2} \]
\[\Rightarrow N_h > 2^{h/2} \]
\[\Rightarrow h < \frac{1}{2} \log_2 n \]

\textbf{Alternatively:} \(N_h > F_h \) (nth Fibonacci number)
- in fact \(N_h = F_{h+2} - 1 \) (simple induction)
- \(F_h = \frac{\phi^h}{\sqrt{5}} \) rounded to nearest integer
where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618 \) (golden ratio)
\[\Rightarrow \max. \, h \approx \log_\phi n \approx 1.440 \lg n \]
AVL insert:
1. insert as in simple BST
2. work your way up tree, restoring AVL property
 (and updating heights as you go)

Each step:
- suppose x is lowest node violating AVL
- assume x is right-heavy (left case symmetric)
- if x's right child is right-heavy or balanced:

```
        x
       /\  \\
      y   k+1
     /\     \\
    k-1  B  C  k
```

Right-Rotate(z)
Left-Rotate(x)

```
        y
       /\    \\
      k+1  k  C
```

- else:

```
        x
       /\    \\
      y   k+1
     /\     \\
    k-1  B  C  k
```

- then continue up to x's grandparent, greatgrandparent,...
Example:

Insert(23)

x = 29: left-left case

Done.

Insert(55)

x = 65: left-right case

Done.

In general may need several rotations before done with an Insert

Delete(-min) harder but possible
Balanced search trees:
- AVL trees
- B-trees / 2-3-4 trees
- BB[x] trees
- red-black trees
- splay trees
- skip lists
- scapegoat trees
- treaps

There are many!

[Adelson-Velski & Landis 1962]
[Bayer & McCreight 1972]
[Nievergelt & Reingold 1973]
[CLRS ch. 13]
[Sleator & Tarjan 1985]
[Pugh 1989]
[Galperin & Rivest 1993]
[Seidel & Aragon 1996]

② = use random numbers to make decisions fast with high probability
④ = “amortized”: adding up costs for several operations ⇒ fast on average

Splay trees:
upon access (search or insert),
move node to root by sequence of
rotations and/or double-rotations
(just like AVL trees)
- height can be linear!
- but still $O(lg n)$ per operation “on average” (amortized)

(we’ll see more about amortization in a couple of lectures)
Optimality:
- for BSTs, can’t do better than $O(\lg n)$ per search in worst case
- in some cases can do better, e.g.:
 - in-order traversal takes $O(n)$ time for n elements
 - put more frequent items near root

Conjecture: Splay trees are $O(\text{best BST})$ for every access pattern

- with fancier tricks, can achieve $O(\lg \lg u)$ performance for integers $1 \ldots u$
 [van Emde Boas; see 6.854 or 6.851]

Big picture:

Abstract Data Type (ADT): interface spec.
- e.g. **Priority Queue**:
 - $Q = \text{new-empty-queue}()$
 - $Q.\text{insert}(x)$
 - $x = Q.\text{deleteMin}()$

Data Structure (DS): algorithm for each op.

- many possible DSs for one ADT
 - e.g. much later, “heap” priority queue