Outline: Dynamic Programming III (of 4)
- text justification
- parenthesization
- knapsack
- pseudopolynomial time
- Tetris training

Reading: CLRS 15

Review:
* DP is all about subproblems & guessing
* 5 easy steps:
 1. define subproblems; count # subprobs.
 2. guess (part of solution); count # choices
 3. relate subprob. solutions; compute time/subprob.
 4. recurse + memoize; time = time/subprob.
 or build DP table bottom-up;
 * # subprobs.
 [check subproblems related acyclically]
 [check original problem = a subproblem or solvable from DP table ⇒ extra time]
* for sequences, good subproblems are often prefixes or suffixes or substrings
Text justification: split text into “good” lines
- obvious (MS Word/OpenOffice) algorithm:
 put as many words fit on first line, repeat
- but this can make very bad lines:
 ● a b l e h vs. b l a h b l a h
 really.long.word
 ● b l a h b l a h

- define \(\text{badness}(i,j) \) for line of words \([i:j]\)
 e.g. \(\{ \infty \text{ if total length} > \text{page width} \)
 \(\frac{1}{(\text{page width} - \text{total length})^3} \text{ else} \)
- goal: split words into lines to min. \(\Sigma \text{badness} \)

1. subproblem = min. badness for suffix words \([i:]\)
 \[\Rightarrow \# \text{subproblems} = \Theta(n) \text{ where } n = \# \text{words} \]
2. guessing = where to end first line, say \(i:j\)
 \[\Rightarrow \# \text{choices} = n - i = O(n) \]
3. relation:
 \[\text{DP}[i] = \min \{ \text{badness}(i,j) + \text{DP}[j] \} \]
 \[\text{for } j \text{ in range}(i+1, n+1) \]
 \[\text{DP}[n] = \emptyset \]
 \[\Rightarrow \text{time per subproblem} = O(n) \]
4. total time = \(O(n^2)\)
5. solution = \(\text{DP}[\emptyset] \)
 (& use parent pointers to recover split)
Parenthesization:

- Optimal evaluation of associative expression
 - e.g. multiplying rectangular matrices
 \[
 \begin{array}{ccc}
 A & B & C \\
 \end{array}
 \quad (AB)C \quad \text{costs } \Theta(n^3) \\
 A(BC) \quad \text{costs } \Theta(n)
 \end{array}
 \]

2. guessing = outermost multiplication: \((\ldots)(\ldots)\)
 \(\Rightarrow \) # choices = \(O(n)\)

1. subproblems = prefixes & suffixes? \textcolor{red}{NO}
 \(= \) cost of substring \(A[i:j]\)
 \(\Rightarrow \) # subproblems = \(\Theta(n^2)\)

3. relation:
 \(-\) \(DP[i,j] = \min\{(DP[i,k] + DP[k,j]) + \text{cost of } (A[i] \ldots A[k-1]) \cdot (A[k] \ldots A[j-1])\}\)

 \(-\) \(DP[i,i+1] = \emptyset\)

\(\Rightarrow\) cost per subproblem = \(O(n)\)

4. total time = \(O(n^3)\)

5. solution = \(DP[0,n]\)
 (use parent pointers to recover parens.)
Knapsack of size S you want to pack
- item i has integer size s_i & real value v_i
- goal: choose subset of items of max. total value
 subject to total size $\leq S$

First attempt:
1. subproblem = value for suffix i: **WRONG**
2. guessing = whether to include item i
 \Rightarrow #choices = 2
3. relation:
 \[-DP[i] = \max(DP[i+1], v_i + DP[i+1] \text{ if } s_i \leq S)?!\]
 - not enough information to know whether
 item i fits — how much space is left?
 GUESS!

1. subproblem = value for suffix i:
 given knapsack of size X
 \Rightarrow #subproblems = $O(nS)$ (!)
3. relation:
 \[-DP[i, X] = \max(DP[i+1, X],
 v_i + DP[i+1, X-s_i] \text{ if } s_i \leq X)\]
 \[-DP[n, X] = \emptyset\]
 \Rightarrow time per subproblem = $O(1)$
4. total time = $O(nS)$
5. solution = $DP[\emptyset, S]$
 (& use parent pointers to recover subset)

AMAZING: effectively trying all possible subsets!
Knapsack is in fact NP-complete!
⇒ suspect no polynomial-time algorithm

G polynomial in length of input

What gives?
- here input = \(<S, s_0, \ldots, s_{n-1}, v_0, \ldots, v_{n-1}\>
- length in binary: \(O(\lg S + \lg s_0 + \cdots) \approx O(n \lg n)\)
- so \(O(nS)\) is not "polynomial time"
- \(O(nS)\) still pretty good if \(S\) is small
- "pseudopolynomial time": polynomial in length of input & integers in the input

Remember:
polynomial - GOOD
exponential - BAD
pseudopoly. - so so
Tetris training:

- given sequence of n Tetris pieces & a board of small width w
- must choose orientation & x coordinate for each
- then must drop piece till it hits something
- full rows do not clear

without these artificialities WE DON'T KNOW!
(but: if w also large then NP-complete)

- goal: survive i.e. stay within height h

material below covered in recitation

First attempt:

1. subproblem = survive in suffix i: ? WRONG
2. guessing = how to drop piece i
 \Rightarrow # choices $= O(w)$
 \Rightarrow What do we need to know about prefix i?

1. subproblem = survive? in suffix i:
 given initial column occupancies $h_0, h_1, \ldots, h_{w-1}$
 \Rightarrow # subproblems $= O(n \cdot h^w)$
3. relation: $DP[i, \hat{h}] = \max(DP[i, \hat{m}]$ for valid moves \hat{m} of piece i in \hat{h})

\Rightarrow time per subproblem $= O(w)$

4. total time $= O(n \cdot w \cdot h^w)$
5. solution $= DP[\emptyset, \emptyset]$
 (& use parent pointers to recover moves)