Shortest Paths III: Special cases

Shortest paths in DAGs
Shortest paths in graphs w/o negative edges
Dijkstra's algorithm

Readings: CLRS 24.2, 24.3

DAGs
Can't have negative cycles because there are no cycles!

1) Topologically sort the DAG, path from u to v implies that u is before v in the linear ordering

2) One pass over vertices in topologically sorted order relaxing each edge that leaves each vertex
$\Theta(V+E)$ time
EXAMPLE

Vertices sorted left to right in topological order

Process r: stays ∞. All vertices to the left of s will be ∞ by definition.

Process s: t: ∞ → 2 x: ∞ → 6

Process t, x, y

preview of dynamic programming
Dijkstra’s Algorithm

For each edge $(u,v) \in E$, assume $w(u,v) \geq 0$

Maintain a set S of vertices whose
final shortest path weights have been determined

Repeatedly select $u \in V - S$ with minimum
shortest path estimate, add u to S, relax
all edges out of u

Pseudo Code

\begin{verbatim}
Dijkstra (G, w, s) // uses priority queue Q

 Initialize (G, s)
 $S \leftarrow \emptyset$
 $Q \leftarrow V[G]$ // Insert into Q
 while $Q \neq \emptyset$
 do $u \leftarrow$ EXTRACT-MIN (Q) // deletes u from Q
 $S' \leftarrow S \cup \{u\}$
 for each vertex $v \in \text{Adj}[u]$
 do RELAX (u,v,w)

 RELAX (u, v, w)
 if $d[v] > d[u] + w(u,v)$
 then $d[v] \leftarrow d[u] + w(u,v)$
 $\pi[v] \leftarrow u$
\end{verbatim}
Example

![Graph Image]

\[
S = \{\} \quad \{A, B, C, D, E\} = Q
\]
\[
S = \{A\} \quad 0 \quad \infty \quad \infty \quad \infty \quad \infty \quad \text{after relaxing edges from A}
\]
\[
S = \{A, C\} \quad 0 \quad 10 \quad 3 \quad \infty \quad \infty \quad \infty \quad \text{after relaxing edges from C}
\]
\[
S = \{A, C, E\} \quad 0 \quad 7 \quad 3 \quad 11 \quad 5 \quad \text{after relaxing edges from C}
\]
\[
S = \{A, C, E, B\} \quad 0 \quad 7 \quad 3 \quad 9 \quad 5 \quad \text{after relaxing edges from B}
\]

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in \(V - S \) to add to set \(S \)

Correctness: Each time a vertex \(u \) is added to set \(S' \), we have \(d[u] = S'(u) \).
\(\Theta(V) \) inserts into priority queue

\(\Theta(V) \) \textit{extract-min} operations

\(\Theta(E) \) \textit{decrease-key} operations

Array impl: \(\Theta(V) \) time for extract min
\(\Theta(1) \) for decrease key

Total: \(\Theta(V \cdot V + E \cdot 1) = \Theta(V^2 + E) = \Theta(V^2) \)

Binary \textit{min-heap}:
\(\Theta(lgV) \) for extract min
\(\Theta(lgV) \) for decrease key

Total: \(\Theta(V \cdot lgV + E \cdot lgV) \)

Fibonacci heap:
\(\Theta(lgV) \) for extract min
\(\Theta(1) \) for decrease key

Amortized cost

Total: \(\Theta(V \cdot lgV + E) \)